
Day - 10 : Disjunction and Proof by Cases

Touseef Haider

Study Mathematics In Lean(MIL) Section 3.5

Logical Meaning :

The statement P ∨ Q is true if at least one of the proposition P or Q is true.

• If P is true, then P ∨ Q is true.

• If Q is true, then P ∨ Q is true.

• If both P and Q are true, then P ∨ Q is still true.

Or in Lean4

In Lean, Or, written as P ∨ Q, is an inductive type, it has two constructors:

• Or.inl(for Or-introduction-left): This constructor is used when you know P is true. It takes a proof
of P and returns a proof of P ∨ Q.

• Or.inr(for Or-introduction-right): This constructor is used when you know Q is true. It takes a proof
of Q and returns a proof of P ∨ Q.

1

2 variable {x y : R}
3

4 example : x < |y| → x < y ∨ x < -y := by

5 -- The core strategy here is to split the proof into two cases.

6 -- based on whether y is non=negative or negative.

7 -- le_or_gt 0 y is a standard lemma giving 0 ≤ y ∨∨ 0 > y

8 -- rcases .. with h | h’ takes this or statement and creates two proof goals:

9 -- 1. The first goal assumes h: 0 ≤ y

10 -- 2. The second goal assume h: y < 0

11 rcases le_or_gt 0 y with h | h

12

13 -- Case 1 : Assume y is non -negative h : 0 ≤ y

14 -- If y ≥ 0, we know |y|=y. The abs_of_nonneg lemma states this.

15 -- We use rw to replace |y| with y in our goal.

16

17 · rw [abs_of_nonneg h]

18 -- The goal x < |y| → x < y ∨ x < -y becomes x < y → x < y ∨ x < -y

19 -- We use intro h to assume the premise

20 -- The left tactic tells Lean we are proving the left part.

21 -- The goal of the left part is x < y.

22 intro h; left; exact h

23 · rw [abs_of_neg h]

24 intro h; right; exact h

Proving the same example using cases:

1

2 variable {x y : R}
3

4 example : x < |y| → x < y ∨ x < -y := by

5 -- We start with the le_or_gt y lemma , which gives us 0 ≤ y ∨ 0 > y.

1



6 -- The cases tactic takes a proof of an Or

7 -- and splits the proof into one goal for each constructor.

8 -- For P ∨ Q, it creates two goals: one assuming P, one assuming Q.

9 cases le_or_gt 0 y

10

11 -- The case tactic allows us to explicitly select and work on one of these goals.

12 -- inl refers to the left constructor of Or , which is Or.inl

13 -- This case corresponds to 0 ≤ y. We name this hypothesis h.

14 case inl h =>

15 -- Inside this case we have h : 0 ≤ y

16 -- rw [abs_of_nonneg h] rewrite |y| to y.

17 rw [abs_of_nonneg h]

18 intro h; left; exact h

19

20 -- inr refers to the right constructor of Or which is Or.inr

21 -- This case corresponds to 0 > y we name this hypothesis h.

22 case inr h =>

23 rw [abs_of_neg h]

24 intro h; right; exact h

Proving the same example using next:

1

2 variable {x y : R}
3

4 example : x < |y| → x < y ∨ x < -y := by

5 -- We start with the le_or_gt y lemma , which gives us 0 ≤ y ∨ 0 > y.

6 -- The cases tactic takes a proof of an Or

7 -- and splits the proof into one goal for each constructor.

8 -- For P ∨ Q, it creates two goals: one assuming P, one assuming Q.

9 cases le_or_gt 0 y

10

11 -- The next tactic tells Lean: Focus on the first goal in the current list

12 -- and introduce its main new hypothesis naming it h.

13 -- Since le_or_gt creates the 0 ≤ y case first , this focuses on that case.

14 next h =>

15 rw [abs_of_nonneg h]

16 intro h; left; exact h

17 -- After the first next block is finished , Lean automatically moves to the next goal in

the list.

18

19 -- This next tactic focuses on that second goal (which is the 0 > y) case.

20 -- It introduces its main new hypothesis , naming it h.

21 next h =>

22 rw [abs_of_neg h]

23 intro h; right; exact h

Proving the same example using match:

1

2 variable {x y : R}
3

4 example : x < |y| → x < y ∨ x < -y := by

5 -- We start with le_or_gt 0 y, which gives 0 ≤ y ∨ 0 > y

6 -- match ... with tells Lean to inspect the structure of le_or_gt 0 y

7 match le_or_gt 0 y with

8 -- The | introduces a pattern to match against.

9 -- Or.inl h : This pattern says ‘‘If le_or_gt o y" was constructed using Or.inl (meaning

the left side , 0 ≤ y, holds), then bind the proof of 0 ≤ y to the name h

10 -- => separates the pattern from the tactics to run for that case.

11 | Or.inl h =>

12 -- We are now in the case where h : 0 ≤ y

13 rw [abs_of_nonneg h]

14 intro h; left; exact h

15 | Or.inr h =>

16 -- We are now case where h : 0 > y

17 rw [abs_of_neg h]

18 intro h; right; exact h

2



Divisibility Example:

1 example {m n k : N} (h : m | n ∨ m | k) : m | n * k := by

2 -- h is our hypothesis which states either m divides n or m divides k.

3 -- The racases tactic is perfect for handling Or statement. It splits the proof into two

cases. It also smart enough to handle the definition of divisibility at the same time.

4 rcases h with ⟨ a, rfl ⟩ | ⟨ b, rfl ⟩
5 -- It says deconstruct h

6 -- In the first case (m | n) name the witness a.

7 -- Use rfl to substitute n with m*a everywhere.

8 -- Same things for b.

9 -- Case 1 : We assume m | n.

10 -- Because rcases ... ⟨ a, rfl ⟩ we know a : N and every n has been replaced by m*a.

11 -- OUr goal m | n*k becomes m| m*a *k

12

13 . rw [mul_assoc]

14 -- rw [mul_assoc] changes the goal to m | m * (a * k)

15 apply dvd_mul_right

16 -- apply dvd_mul_right uses the lemma that a number m always divides m times any other

number (m | m* x)

17 . rw [mul_comm , mul_assoc]

18 apply dvd_mul_right

3


