
Day - 11 : Sequences and Convergence

Touseef Haider

Study Mathematics In Lean(MIL) Section 3.6

1 import Mathlib.Data.Real.Basic

2

3 def ConvergesTo (s : N → R) (a : R) :=

4 ∀ ϵ > 0, ∃ N, ∀ n ≥ N, |s n - a| < ϵ
5

6 -- (s : N → R) is the first input. it is a sequence of real numbers.

7 -- (a : R) is a real number that the sequence converges to.

8 -- rest is just convergence definition.

9

10 example : (fun x y : R 7→ (x + y) ^ 2) = fun x y : R 7→ x ^ 2 + 2 * x * y + y ^ 2 := by

11 -- fun x y : R 7→ ... is how Lean writes lambda functions.

12 ext

13 -- ext is a tactic that stands for ’’extensionality ’’. For functions , it means that to

prove two functions are equal , you need to prove they give the same output for every

possible input.

14 -- ring is a powerful tactic that can automatically prove identities that hold in any ring

15 ring

1

2 example (a b : R) : |a| = |a - b + b| := by

3 -- congr tactic short for congruence tries to prove equalities by breaking them down. Here

, it sees that we are trying to prove |X| = |Y|. It will change the goal to proving X =

Y, if it can justify that X=Y implies |X| = |Y|.

4 congr

5 ring

1 example {a : R} (h : 1 < a) : a < a * a := by

2 convert (mul_lt_mul_right _).2 h

3 -- mul_lt_mul_right is a theorem that eseentially says if x<y and z>0 then x*z < y*z. (_)

.2 is selecting a specific implication.

4 -- We are also telling Lean we want to prove our goal by showing it is equivalent to h,

after multiplying both sides by some positive number.

5 -- convert tactic that asks Lean to change the goal to something else , provided we can

prove the new thing implies the old thing. It changes the goal to 1 * a < a * a, and

leaves us with thwo side goals:

6 -- 1. Prove that 1 * a = a

7 -- 2. Prove that a is positive.

8 · rw [one_mul]

9 -- rw [one_mul] address the first goal , It rewrites the term 1 * a to just a, because

multiplying by 1 does not change the value.

10 exact lt_trans zero_lt_one h

11 -- This addresses the second goal. It uses the transitivity of the less than relation to

show that since 0 < 1 and 1 < a, then 0 < a.

Below is the theorem that states that a constant sequence converges to the constant value.

1 theorem convergesTo_const (a : R) : ConvergesTo (fun _ 7→ a) a := by

2

3 intro ϵ ϵpos
4 -- We need to prove ∀ ϵ >0 , . . . The intro tactic introduces variables for the universal

quantifiers. It introduces ϵ(a real number) and ϵpos(a proof that ϵ > 0). Our new goal

will be ∃ N, ∀ n ≥ N, |a - a| < ϵ.
5 use 0

6 -- We need to prove ∃ N, ... The use tactic provides a witness for the existenial

quantifier. Here , we use 0 as the witness for N. Our new goal is ∀ n ≥ 0, |a - a| < ϵ.

1

7 intro n nge

8 -- We need to prove ∀ n ≥ 0, ... We introduce n (a natural number) and nge (a proof that

n ≥ 0). Our new goal is |a - a| < ϵ.
9 rw [sub_self , abs_zero]

10 -- sub_self rewrites a-a as 0. The goal becomes |0| < ϵ.
11 -- abs_zero rewrites |0| as 0. The goal becomes 0 < ϵ.
12

13 apply ϵpos
14 -- apply tactic tries to prove the goal by applying a theorem or lemma. Here , it applies ϵ

pos , which is a proof that ϵ > 0. The goal is now proved.

Below is the theorem that states that the sum of two convergent sequences converges to the sum of their
limits.

1 theorem convergesTo_add {s t : N → R} {a b : R}
2 (cs : ConvergesTo s a) (ct : ConvergesTo t b) :

3 ConvergesTo (fun n 7→ s n + t n) (a + b) := by

4 intro ϵ ϵpos
5 -- Introduce ϵ and ϵpos , which is a proof that ϵ > 0. The goal is now to find an N such

that for all n ≥ N, |s n + t n - (a + b)| < ϵ.
6 dsimp -- this tactic unfolds the definition of ConvergesTo , making the goal clearer.

7 have ϵ2pos : 0 < ϵ / 2 := by linarith -- This is a key step in many convergence proofs. We

want to use the fact that s and t converge. We will need them to be closer than ϵ/2 to

their limits.

8 -- ϵ2pos is a proof that ϵ / 2 > 0. We use linarith to derive this from ϵpos.
9 rcases cs (ϵ / 2) ϵ2pos with ⟨ Ns, hs ⟩

10 -- This is where we use the hypothesis cs. Since s converges , the definition ConvergesTo s

a holds for any positive number including ϵ / 2 (using ϵ2pos).
11 -- So cs (ϵ / 2) ϵ2pos gives us a natural number Ns and a proof hs that for all n ≥ Ns, |s

n - a| < ϵ / 2.

12 -- rcases with ⟨ Ns, hs ⟩ means we are unpacking the existential and universal quantifier.

It extract the N (which it names Ns) and the proof ∀ n ≥ Ns, |s n - a| < ϵ / 2 (which

it names hs).

13

14 rcases ct (ϵ / 2) ϵ2pos with ⟨ Nt, ht ⟩
15 -- This is similar to the previous step.

16 use max Ns Nt

17 -- Now we need to provide our N for the sum sequence. We choose the maximum of Ns and Nt.

This ensures that both conditions for s and t are satisfied for n greater than or equal

to this N.

18 intro n nge

19 -- We introduce n and nge that n ≥ max Ns Nt. The goal is now to show that |s n + t n - (

a + b)| < ϵ.
20 have hns : n ≥ Ns := le_of_max_le_left nge

21 -- We need to show that n ≥ Ns. Since n ≥ max Ns Nt, and the maximum is always greater

than or equal to its left component , we can conclude n ≥ Ns. le_of_max_le_left is the

theorem that says this , and nge is our proof that n ≥ max Ns Nt.

22 have hnt : n ≥ Nt := le_of_max_le_right nge

23 calc

24 |s n + t n - (a + b)| = |(s n - a) + (t n - b)| := by

25 congr; ring -- We rearrange the terms inside the absolute value. congr simplifies it

to proving the insdie is equal and ring prove that.

26 _ ≤ |s n - a| + |t n - b| := abs_add _ _ -- We use the triangle inequality (abs_add)

which states |x + y| ≤ |x| + |y| for any real numbers x and y.

27 _ < ϵ / 2 + ϵ / 2 := add_lt_add (hs n hns) (ht n hnt) -- We know from hs that if n ≥ Ns

(which hns proves), then |s n - a| < ϵ / 2. So hs n hns is the proof of |s n - a| < ϵ /

2. Similarly , ht n hnt gives us |t n - b| < ϵ / 2.

28 -- add_lt_add is a theorem that states if x < y and z < w, then x + z < y + w. We use it

to combine the two inequalities.

29 _ = ϵ := by ring -- Finally , we use the ring tactic to simplify ϵ / 2 + ϵ / 2 to ϵ. This

completes the proof that the sum of the sequences converges to the sum of their limits.

We are proving that if s converges to a , then (c * s) converges to (c * a)

1 theorem convergesTo_mul_const {s : N → R} {a : R} (c : R) (cs : ConvergesTo s a) :

2 ConvergesTo (fun n 7→ c * s n) (c * a) := by

3 -- First , let ’s handle the easy case where c is 0.

4 by_cases h : c = 0

5 -- This is the block for the c=0 case.

2

6 -- convert changes the goal to proving that two things are equal.

7 -- Here , it changes the goal to proving ‘convergesTo_const 0’ is the same as our

original goal.

8 · convert convergesTo_const 0

9 -- The first goal from ’convert ’ is to show ’(fun n 7→ c * s n) = (fun n 7→ 0)

10 · rw [h] -- replace c with 0

11 ring -- The ring tatic can solve equations like 0 * s n = 0

12 -- The second goal is to show c * a = 0.

13 rw [h] -- replace c with 0

14 ring -- ring solve 0 * a = 0

15

16 -- This is the blok for c ̸= 0 case. h is now hypothesis c ̸= 0.

17 have acpos : 0 < |c| := abs_pos.mpr h

18 -- our goal is to show ConvrgesTo (fun n 7→ c * s n) (c * a)

19

20 -- Start the ϵ - N proof

21 intro ϵ ϵ_pos
22

23 -- OUr hypothesis cs gives us an N for any positive epsilon.

24 -- We will use it with ϵ’ = ϵ / |c|

25 -- This is a valid positive epsilon because ϵ > 0 and |c| > 0.

26 have ϵ’_pos : ϵ /|c| > 0 := div_pos ϵ_pos acpos

27

28 -- Get the N from our hypothesis cs.

29 let ⟨ N, hN ⟩ := cs (ϵ /|c|) ϵ’_pos
30

31 -- Now we prove this N as our witness for the final goal.

32

33 use N

34

35 -- We now have to prove that for any n ≥ N , the inequality holds.

36 intro n hn

37

38 -- The goal is now | (fun n 7→ c * s n) n - c* a| < ϵ
39 -- Let ’s simplify the expression

40 rw [← mul_sub , abs_mul]

41

42 -- The goal is now |c|*|s n - a| < ϵ
43 -- We can use the inequality from our hypothesis ’hN’

44 -- hN says that for n ≥ N, we have |s n - a| < ϵ/|c|
45 -- So we can replace |s n - a| with something bigger to prove our goal

46 calc

47 |c| * |s n - a| < |c| * (ϵ/|c|) := by

48 -- this step is true because |s n - a| < ϵ /|c|

49 apply mul_lt_mul_of_pos_left

50 · exact hN n hn

51 · exact acpos

52 _ = ϵ := by

53 -- This step is just algebra

54 rw [mul_div_cancel◦ _ (ne_of_gt acpos)]

3

