
Day - 12 : Sets

Touseef Haider

Study Mathematics In Lean(MIL) Section 4.1

1 import Mathlib.Data.Set.Lattice

2 import Mathlib.Data.Nat.Prime.Basic

3 import MIL.Common

4

5 -- Sets as Functions: In Lean4 , Set α is just a fancy name for a α → Prop function.

6 -- This means a set is a function. You give it an element (of type α) and it gives you back

a proposition (true or false). If it returns true , the element is in the set; if it

returns false , the element is not in the set.

7

8 -- The symbol for ‘‘is an element of‘‘ is ∈. Since a set s is just a function α → Prop ,

checking if x is in s is the same as applying the function s to x. So in Lean4 , we write

x ∈ s as s x.

9

10 -- def EvenNumbers : Set N := Even

11

12 namespace C04S01

13 def EvenNumbers : Set N := Even

14

15 -- That is the EvenNumbers set , which is the set of all even natural numbers. If we want to

check say 4 is in this set , we can write 4 ∈ EvenNumbers , which is the same as Even 4.

If we write 5 ∈ EvenNumbers , it is the same as Even 5, which is false.

16

17 -- {x : α | P x} is a notation for the set of all x in α such that P x is true. In Lean4 ,

this is just a function that takes an element of type α and returns true if P x is true ,

and false otherwise.

18

19

20 -- 1. Empty Set: The empty set is a set that contains no elements. In Lean4 , it symbol is ∅.
It is defined as the set of all x such that P x is false for any property P. In Lean4 ,

we can write it as {x : α | False} or simply ∅.
21

22 -- 2. Universal Set: The universal set is the set that contains all elements of a given type

. In Lean4 , it is denoted by univ. It is defined as the set of all x such that P x is

true for any property P. In Lean4 , we can write it as {x : α | True} or simply univ.

23

24 section

25 variable {α : Type*}

26 variable (s t u : Set α)
27 open Set

28

29 #check Even

30

31 -- If set s is a subset of t, then the intersection of s with any set u is a subset of the

intersection of t with u.

32

33

34

35 example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by

36 -- subset_def is a lemma that states that A ⊆ B means for all x, x ∈ A → x ∈ B. So the

main goal s ∩ u ⊆ t ∩ u is equivalent to saying for all x, if x ∈ s ∩ u, then x ∈ t ∩ u

.

37 rw [subset_def]

38 -- inter_def this rewrites x ∈ A ∩ B as x ∈ A ∧ x ∈ B.

39 rw [inter_def]

1



40 rw [inter_def]

41 -- The goal becomes for all x, if x ∈ s ∧ x ∈ u, then x ∈ t ∧ x ∈ u.

42 rw [subset_def] at h

43 -- This rewrites our hypothesis h using the subset definition. h becomes for all x, if x

∈ s, then x ∈ t.

44

45

46 -- mem_setOf usually cleans up definition related to set -builder notation {...|...}. In this

context , it might not change much visually , but it ensures the membership terms (∈) are

in a basic form that rintro can easily handle.

47 simp only [mem_setOf]

48

49

50 -- It says let x be an arbitrary element , ⟨ xs, xu ⟩ says that assume the part before the

→ which is x ∈ s ∧ x ∈ u. Because it is an AND statement , it destructures it into two

parts: xs and xu, which are the proofs that x is in s and u respectively.

51 rintro x ⟨ xs, xu ⟩
52 -- exact means our goal is exactly ⟨ h _ xs, xu ⟩. Since our goal is x ∈ t ∧ x ∈ u, we

need to provide a proof for the left side and a proof for the right side.

53 -- Left side (x ∈ t) is h _ xs. We apply h to our x (the _ lets Lean figure out itself)

and then give it xs (our proof that x ∈ s). The result is a proof that x ∈ t.

54 -- Right side (x ∈ u) is xu, which we already have from our assumption that x ∈ s ∧ x ∈ u.

55 exact ⟨ h _ xs, xu ⟩
56

57 example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by

58 simp only [subset_def , mem_inter_iff] at *

59 rintro x ⟨ xs, xu⟩
60 exact ⟨h _ xs, xu⟩
61

62 example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u := by

63 intro x xsu

64 exact ⟨h xsu.1, xsu.2⟩
65

66

67 -- Term mode proof.

68 example (h : s ⊆ t) : s ∩ u ⊆ t ∩ u :=

69 fun _ ⟨ xs, xu ⟩ 7→ ⟨ h xs, xu ⟩
70 -- fun _: This part directly addresses the ∀ x.

71 -- ⟨ xs, xu ⟩: This part destructures the assumption x ∈ s ∩ u into two parts: xs (x ∈ s)

and xu (x ∈ u).

72 -- ⟨ ⟩ we build the AND proof by providing a proof for each side.

73 -- h xs : This is the proof for x ∈ t, h is our hypothesis that s ⊆ t. In term mode , Lean

is smart enough to know that s ⊆ t means it can act like a function that takes a proof

of x ∈ s and gives back a proof of x ∈ t.

74 -- xs is our proof that x ∈ s, so h xs gives us the proof that x ∈ t.

75 -- xu: This is the proof for x ∈ u, which we already have from our assumption that x ∈ s ∩
u.

76 -- 7→ ⟨h xs, xu⟩: This part constructs the proof that x ∈ t ∩ u by applying h to xs (to get

x ∈ t) and using xu directly (since x ∈ u is already given).

77

78

79

80

81 example : s ∩ t ∪ s ∩ u ⊆ s ∩ (t ∪ u) := by

82 rintro x h_mem

83 -- Now our x : α is introduced and we have a proof h_mem that x is in s ∩ t ∪ s ∩ u.

84 -- When you have a hypothese that is an Or statement , you can use cases to split it into

two cases.

85 rcases h_mem with h_st | h_su

86 -- Case 1: h_st means x is in s ∩ t.

87 -- We need to show that x is in s ∩ (t ∪ u).

88 -- Case 2: h_su means x is in s ∩ u.

89 -- We need to show that x is in s ∩ (t ∪ u).

90 -- Solve Case 1

91 -- We know h_st : x ∈ s ∩ t. This means x ∈ s ∧ x ∈ t. We can break this down into two

parts using rcases.

92 rcases h_st with ⟨ hs, ht ⟩
93 -- Now we have hs : x ∈ s and ht : x ∈ t.

2



94 -- We need to show that x is in s ∩ (t ∪ u).

95 -- We need to build this AND statement. We need a proof for x ∈ s (we have hs) and a

proof for x ∈ t ∪ u.

96 -- How can we prove x ∈ t ∪ u? Since we know ht : x ∈ t, we can use this directly. So we

can use exact ⟨ hs , Or.inl ht ⟩.
97 exact ⟨hs, Or.inl ht⟩
98 -- Solve Case 2

99 -- We know h_su : x ∈ s ∩ u. This means x ∈ s ∧ x ∈ u. We can break this down into two

parts using rcases.

100 rcases h_su with ⟨ hs, hu ⟩
101 -- Now we have hs : x ∈ s and hu : x ∈ u.

102 -- We need to show that x is in s ∩ (t ∪ u).

103 -- We need to build this AND statement. We need a proof for x ∈ s (we have hs) and a

proof for x ∈ t ∪ u.

104 -- How can we prove x ∈ t ∪ u? Since we know hu : x ∈ u, we can use this directly. So we

can use exact ⟨ hs , Or.inr hu ⟩.
105 exact ⟨ hs, Or.inr hu⟩
106

107

108

109

110 -- Indexed Families of Sets

111 -- Imagine you have a collection of sets , but instead of just a few , you might have a whole

sequence or even a more complex collection. How do you keep track of all these sets?

112 -- Index Set I : This is just any set (in Lean4 any Type*) whose elements we use as labels

or indices. It could be natural numbers , integers , or any other type.

113 -- Index Family A : This is essentially a function. It takes an index i from your index set

I and gives you back a set , which we call Ai. In Lean4 , we write this as A : I → Set α.
This means for each i in I, A i is a set of elements of type α.

114

115 -- Let I = {1, 2, 3 }, then A : I → Set N could be defined as:

116 -- A 1 = {1,2} , A 2 = {2, 3}, A 3 = {3,4}.

117 -- Here A is the function that maps 1 to {1,2}, 2 to {2,3}, and 3 to {3 ,4}. So A 1 is the

set {1,2}, A 2 is the set {2,3}, and A 3 is the set {3,4}.

118

119 -- Indexed Union
⋃

i, A i : Indexed union is like taking all the elements from all the sets

in your family and putting them into one big set. In Lean4 , we write this as
⋃

i, A i.

It means for every index i in I, we take the set A i and combine all those sets into

one big set.

120 -- Indexed Intersection
⋂

i, A i : Indexed intersection is like finding the common elements

that are in every set in your family. In Lean4 , we write this as
⋂

i, A i. It means

for every index i in I, we take the set A i and find the elements that are in all those

sets.

121

122 --
⋃

i A i = A 1 ∪ A 2 ∪ A 3 = {1,2} ∪ {2,3} ∪ {3,4} = {1,2,3,4}

123 --
⋂

i A i = A 1 ∩ A 2 ∩ A 3 = {1,2} ∩ {2,3} ∩ {3,4} = {}

124

125 section

126 variable {α I : Type*}

127 variable (A B : I → Set α)
128 variable (s : Set α)
129

130 open Set

131

132 example : (s ∩
⋃

i, A i) =
⋃

i, A i ∩ s := by

133 -- This is a set equality , it says two sets are equal if and only if they contain the same

elements. So instead of proving the sets are equal directly , we prove that for every x,

x is in the left set if and only if x is in the right set.

134 ext x

135 -- Our goal is now to show that x ∈ (s ∩
⋃

i, A i) if and only if x ∈
⋃

i, A i ∩ s.

136 simp only [mem_inter_iff , mem_iUnion]

137 -- We tell Lean to simplify only the definitions for set intersection (mem_inter_iff))

which says x ∈ A ∩ B if and only if x ∈ A and x ∈ B, and the definition for indexed

union (mem_iUnion) which says x ∈
⋃

i, A i if and only if there exists an index i such

that x ∈ A i.

138 -- Applying these rules , our goal become x ∈ s ∧ (∃ i, x ∈ A i) if and only if there

exists an index i such that x \in A i ∧ x ∈ s.

139 constructor

3



140 -- constructor split the goal into two parts , one for each direction of the if and only if

.

141 -- The first part is to show that if x is in the left set , then it is also in the right

set.

142 -- The second part is to show that if x is in the right set , then it is also in the left

set.

143 -- We are taking the first sub -goal (indicated by .) rintro introduces the premise (the

left side of → ) as a hypothesis and break it down. The premise is x ∈ s ∧ ∃ i, x ∈
A i.

144 · rintro ⟨ xs, ⟨i, xAi⟩ ⟩
145 -- xs is a proof that x ∈ s.

146 -- ⟨i, xAi⟩ is a proof that there exists an index i such that x ∈ A i.

147 -- We have the exact proof from previous step so we use exact to show that x ∈ A i ∩ s.

148 exact ⟨i, xAi , xs⟩
149 rintro ⟨i, xAi , xs⟩ -- This is the second sub -goal , we are taking the second part of the

constructor.

150 exact ⟨xs, ⟨i, xAi⟩ ⟩
151

152

153

154 example : (
⋂

i, A i ∩ B i) = (
⋂

i, A i) ∩
⋂

i, B i := by

155 ext x -- We are proving that two sets are equal by showing that for every x, x is in the

left set if and only if x is in the right set.

156 simp only [mem_inter_iff , mem_iInter]

157 -- We simplify the definition of indexed intersection (mem_iInter) which says x ∈
⋂

i, A

i if and only if for all i, x ∈ A i.

158 -- Applying this rule , our goal become ∀ i : I , x ∈ A i ∧ ∀ i : I, x ∈ B i.

159 constructor

160 -- We split the goal into two parts , one for each direction of the if and only if.

161 · intro h -- We introduce the premise (the left side of → ) as a hypothesis h.

162 -- Our goal is now ∀ i , x ∈ A i ∧ ∀ i, x ∈ B i.

163 constructor -- Since we have two parts to prove , we use constructor to split the goal

into two parts.

164 · intro i

165 exact (h i).1 -- We use our hypothesis h, since h tells us ∀ i, x ∈ A i ∧ x ∈ B i,

applying it to our i(h i) givues us x ∈ A i ∧ x ∈ B i. This is the end statement , we

only need the left part which we get by (h i).1. So (h i).1 is a proof that x ∈ A i,

which is exactly what we need.

166 intro i

167 exact (h i).2

168 -- This time we need the right part of h i, which we get using .2, So (h i).2 is a proof

that x ∈ B i, which is exactly what we need. This complete the first part of the

constructor.

169 rintro ⟨ h1, h2⟩ i

170 -- Now we tackle the second part of the constructor , which is to show that if x is in the

right set , then it is also in the left set.

171 -- h1 is proof that ∀ i x ∈ A i and h2 is proof that ∀ i x ∈ B i.

172 -- We need to show that for every i, x is in A i ∧ B i.

173 -- Our goal has ∧ so we can use constructor to split it into two parts.

174 constructor

175 · exact h1 i -- This gives us a proof that x ∈ A i, which is exactly what we need for the

left part of the intersection.

176 exact h2 i -- This gives us a proof that x ∈ B i, which is exactly what we need for the

right part of the intersection.

4


