
Day - 2 : Propositions as Types, Proofs as Objects (Curry-Howard

Correspondence)

Touseef Haider

May 13, 2025

2.1. Propositions are Types

In mathematics, a proposition is a statement that can be either true or false.

• 2 + 2 = 4 is a true proposition.

• The Earth is flat is a false proposition.

• x is an even number is a proposition that depends on the value of x.

In Lean (and other systems based on what’s called dependent type theory, this idea is taken a step
further : Every proposition is considered a type. This is the core of the Curry-Howard correspondence (or
Curry-Howard-Lambek correspondence). It draws a direct analogy between logic and computation.

If a proposition is like P : Prop (This is how Lean denote that P is a proposition). You can think of P
not just as a statement, but as a type.

• The proposition 5 > 3 can be thought of as a type.

• The proposition “for all natural numbers n, n+ 0 = n” can be thought of a type.

This might seems strange. What does it mean for a statement like 5 > 3 to be type? This leads directly to
our next point about proofs.

The key to making “ propositions as type” is to see what inhabits these types.

2.2. Proofs are Objects (Terms) of that Type

If a proposition P is a type, then what is an object (or element or inhabitant) of type P ?
A proof of P is an object of type P. Let’s break this down:

• Type P : This is our proposition. Think of it as a specification or a challenge. For example, the type
IsEven 6 represents the proposition “6 is an even number”.

• Object p:P : If we can construct an object p that has the type P, then p is the proof of the proposition
P.

So,

• If the type P (our proposition) has at least one object/term/element, then the proposition P is consid-
ered true (because a proof exists).

• If the type P is empty means it has no object/term/element, then the proposition P is considered false
(because no proof exists).

Proposition: 2 + 2 = 4

1



• Type : 2 + 2 = 4. This is literally a type in Lean.

• Proof/Object: Lean has a way to construct a term, let’s call it proof of equality such that proof of equality : 2 + 2 = 4.
The existence of this term means the propitiation is true. Often, for simple definitional equalities, this
proof term is something like rfl (which we will see later).

Proposition: The Earth is flat.

• Type : The Earth is flat .

• Proof/Object : We would expect this type to be empty. There is no valid construction/proof that can
be assigned this type within a consistent mathematical framework that includes facts about the Earth.

This is the essence of the Curry-Howard correspondence:

• Propositions ↔ Types

• Proofs ↔ Programs/Terms/Objects

• Provability ↔ Inhabitation (is there a term of that type?)

It connects logic (propositions, proofs) with computation (types, programs). When we write a proof in
Lean, we are essentially constructing a term of a specific type. The tactics we use are tools to help us build
this term.

2.3. Analogy: The EvenNumber

Imagine we define a type called IsEven. This type is not just for any number, but it is a type that can only
be inhabited by numbers that are actually even.

• Proposition as a Type: Let’s say we have a specific number, like 6. The proposition 6 is an even
number can be represented by a type. We could think of this type as IsEven 6.

• Proof as an object : How would we prove that 6 is even? We would show that 6 = 2 ∗ 3. This
demonstration, this piece of evidence, is the proof. In a system like Lean, we construct a specific proof
object (let’s call it proof that 6 is even ) which fundamentally relies on the definition of even (e.g. n
is even if there exists an integer k such that n = 2 ∗ k. This proof that 6 is even would then have the
type IsEven 6. So proof that 6 is even : IsEven 6.

• Construct with an Odd Number: Now consider the number 7. The proposition 7 is an even number
would correspond to the type IsEven 7. Since 7 is not even, we would not be able to construct a valid
proof object for this type. The type IsEven 7 would be uninhabited.

Connecting to Propositions are Types:

• The type IsEven n (where n is some number) is like asking the question or stating the challenge: Is n
an even number?

• An object that successfully inhabits the type IsEven n is the answer Yes, and here is why. (here is the
evidence/proof.

This is slightly different from saying 6 : Nat (6 is a type Natural Number). Nat is a collection of numbers.
IsEven 6 is more like a certification or a proof that specifically confirms the property that 6 is even number.

Why is this useful? When we write theorem my theorem : P := by ... proof ... Lean is checking that
your proof actually constructs a valid term of type P. If it does, the theorem is proved.

2


