Day - 2 : Propositions as Types, Proofs as Objects (Curry-Howard Correspondence)

Touseef Haider

May 13, 2025

2.1. Propositions are Types

In mathematics, a *proposition* is a statement that can be either true or false.

- 2+2=4 is a true proposition.
- The Earth is flat is a false proposition.
- x is an even number is a proposition that depends on the value of x.

In Lean (and other systems based on what's called *dependent type theory*, this idea is taken a step further : *Every proposition is considered a type*. This is the core of the *Curry-Howard correspondence* (or *Curry-Howard-Lambek correspondence*). It draws a direct analogy between logic and computation.

If a proposition is like P : Prop (This is how Lean denote that P is a proposition). You can think of P not just as a statement, but as a *type*.

- The proposition 5 > 3 can be thought of as a type.
- The proposition "for all natural numbers n, n + 0 = n" can be thought of a type.

This might seems strange. What does it mean for a statement like 5 > 3 to be type? This leads directly to our next point about proofs.

The key to making "propositions as type" is to see what inhabits these types.

2.2. Proofs are Objects (Terms) of that Type

If a proposition P is a type, then what is an *object* (or element or inhabitant) of type P?

A proof of P is an object of type P. Let's break this down:

- Type P : This is our proposition. Think of it as a specification or a challenge. For example, the type IsEven 6 represents the proposition "6 is an even number".
- Object p:P : If we can construct an object p that has the type P, then p is the proof of the proposition P.

So,

- If the type P (our proposition) has at least one object/term/element, then the proposition P is considered true (because a proof exists).
- If the type P is empty means it has no object/term/element, then the proposition P is considered false (because no proof exists).

Proposition: 2 + 2 = 4

- Type : 2 + 2 = 4. This is literally a type in Lean.
- Proof/Object: Lean has a way to construct a term, let's call it proof_of_equality such that proof_of_equality : 2 + 2 = -The existence of this term means the propitation is true. Often, for simple definitional equalities, this proof term is something like rfl (which we will see later).

Proposition: The Earth is flat.

- Type : The Earth is flat.
- Proof/Object : We would expect this type to be empty. There is no valid construction/proof that can be assigned this type within a consistent mathematical framework that includes facts about the Earth.

This is the essence of the Curry-Howard correspondence:

- Propositions \leftrightarrow Types
- Proofs \leftrightarrow Programs/Terms/Objects
- Provability \leftrightarrow Inhabitation (is there a term of that type?)

It connects logic (propositions, proofs) with computation (types, programs). When we write a proof in Lean, we are essentially constructing a term of a specific type. The tactics we use are tools to help us build this term.

2.3. Analogy: The EvenNumber

Imagine we define a type called IsEven. This type is not just for any number, but it is a type that can only be inhabited by numbers that are actually even.

- Proposition as a Type: Let's say we have a specific number, like 6. The proposition 6 is an even number can be represented by a type. We could think of this type as IsEven 6.
- Proof as an object : How would we prove that 6 is even? We would show that 6 = 2 * 3. This demonstration, this piece of evidence, is the proof. In a system like Lean, we construct a specific *proof object* (let's call it proof_that_6_is_even) which fundamentally relies on the definition of even (e.g. n is even if there exists an integer k such that n = 2 * k. This proof_that_6_is_even would then have the type IsEven 6. So proof_that_6_is_even : IsEven 6.
- Construct with an Odd Number: Now consider the number 7. The proposition 7 *is an even number* would correspond to the type IsEven 7. Since 7 is not even, we would not be able to construct a valid proof object for this type. The type IsEven 7 would be uninhabited.

Connecting to Propositions are Types:

- The type IsEven n (where n is some number) is like asking the question or stating the challenge: Is n an even number?
- An object that successfully inhabits the type IsEven n is the answer Yes, and here is why. (here is the evidence/proof.

This is slightly different from saying 6 : Nat (6 is a type Natural Number). Nat is a collection of numbers. IsEven 6 is more like a certification or a proof that specifically confirms the property that 6 is even number.

Why is this useful? When we write theorem $my_theorem : P := by ... proof ... Lean is checking that your proof actually constructs a valid term of type P. If it does, the theorem is proved.$