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Study Mathematics In Lean(MIL) Section 2.1

Now that we have a sense of propositions as types and proofs as objects, let’s get our hands dirty
(figuratively speaking!) and see how to actually construct these proof objects in Lean. This brings us to:

3.1. The Concept of a Goal in a Proof

When you start writing a proof in Lean, you begin by stating the theorem you want to prove. For example:

Listing 1: Lean Theorem Example

import Mathlib.Data.Nat.Basic -- Or a simpler import if you don ’t have

Mathlib fully set up

-- e.g., sometimes just ’import Lean ’ gives basic Nat definitions

theorem add_zero_example (n : Nat) : n + 0 = n := by

-- Tactics will go here

sorry -- ’sorry ’ is a placeholder tactic that "solves" any goal

-- remove it to see the actual goal

Let’s break this down:

• theorem add_zero_example: This declares that we’re about to state and prove a theorem named add_zero_example
.

• (n : Nat): This says that our theorem will talk about some arbitrary natural number n. This n is a
hypothesis or assumption for our proof—we get to assume n is a natural number.

• : n + 0 = n: This is the proposition we want to prove. In Lean’s “propositions as types” view, this
is the type for which we need to construct a term (our proof).

• :=: This means “is defined as” or “is proven by.”

• by: This block is where we write the actual steps of our proof, using tactics.

The Goal

As soon as you write by, Lean’s Infoview will display the “goal state.” For the example above, before we
write any tactics, the Infoview would show something like this:

1 goal

n : Nat

⊣ n + 0 = n

• 1 goal: You have one thing you currently need to prove.

• n : Nat: This is your local context or hypotheses. It lists what you know or assume. Here, we know
n is a natural number.
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• ⊣ n + 0 = n: The ⊣ symbol (often called a “turnstile”) separates your knowns from what you need to
prove. The expression n+ 0 = n is your current goal.

Your job as the prover is to use tactics to manipulate this goal state, simplify it, or match it with your
hypotheses, until the goal disappears or is transformed into something obviously true. Each tactic you apply
aims to construct a part of the underlying “proof object.”

Think of it like a puzzle. The Infoview shows you the picture you need to complete (the goal) and the
pieces you have (the hypotheses). Tactics are your tools for fitting those pieces together.

So, your Infoview shows:

1 goal

n : Nat

⊣ n + 0 = n

This means Lean is asking you to prove that “for any natural number n, n plus 0 equals n.”

3.2. The rfl Tactic: Proof by Reflexivity

Now, how do we prove this? In mathematics, n + 0 = n is often true by definition of addition with zero
(it’s part of how addition on natural numbers is defined, or a very basic property).

Lean has a tactic for exactly this kind of situation: rfl.
rfl stands for “reflexivity.” It attempts to prove that the left-hand side of an equality is definitionally

equal to the right-hand side. This means Lean will try to unfold definitions and simplify both sides to see if
they become identical.

How to use it:

In your Lean file, on the line where your cursor is (where sorry used to be), type rfl:

Listing 2: Using the rfl Tactic

import Mathlib.Data.Nat.Basic -- Or your current import setup

theorem add_zero_example (n : Nat) : n + 0 = n := by

rfl -- This is our proof!

What to Expect in the Infoview:

Once you type rfl (and Lean processes it, which is usually instant), look at the Infoview. It should now say
something like:

goals accomplished

This means the rfl tactic successfully proved the goal! Lean was able to see that, according to its
definitions (likely from Mathlib.Data.Nat.Basic or its core library), n + 0 is indeed the same as n. You’ve
constructed your first proof object!

Why this is important:

The statement n + 0 = n is a fundamental property often called the “identity element for addition.” Using
rfl tells Lean, “Hey, this is true by definition or by basic computation. Just check it!”

Go ahead and try adding rfl to your proof. Let me know what the Infoview says! This is your first step
from stating a problem to solving it with Lean’s help.
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3.3. Practice Time

Let’s try a slightly different, but still very similar, algebraic identity. How about proving that 0 + n = n

for any natural number n?

import Mathlib.Data.Nat.Basic -- Or your current import setup

theorem zero_add_example (n : Nat) : 0 + n = n := by

-- Your proof tactic goes here!

Definitional Equality vs. Propositional Equality:

• rfl works when two things are equal by their very definition or by a very simple computation that
Lean can do directly by unfolding definitions. For natural numbers in Lean, addition m + n is often
defined by recursion on the second argument n. So n+ 0 = n is usually true by one of the base cases
of this definition.

• However 0 + n = n, while mathematically true, might not be directly how the + operation is defined.
It is usually a theorem that itself needs to be proven from the basic definitions (often by induction, or
using other established theorems).

• So, Lean is saying “I cannot just unfold definitions to see that 0 + n is the same as n. You need to
show me why they are equal using other known facts.”

This does not mean your mathematical intuition is wrong. It just means rfl is too simple for this case. We
need a more powerful tool, or we need to use an existing theorem.

This is the perfect time to introduce our next tactic!

3.4. The rw (rewrite) Tactic

When rfl isn’t enough, but you know an equality that should help, the rw tactic is your friend. rw stands
for “rewrite.”

You use rw [some lemma] to rewrite the goal using some lemma.

• If some lemma is an equality like A = B, then rw [some lemma] will try to find A in your goal and replace
it with B.

• If some lemma is A = B, then rw [← some lemma] (or rw [Eq.symm some lemma]) will try to find B in
your goal and replace it with A (it rewrites from right to left).

Solving 0 + n = n

For natural numbers, there’s a standard theorem that states exactly what you want to prove: 0 + n = n.
In Lean’s Mathlib, this theorem is often called Nat.zero add.

So, if we have access to Nat.zero add (which import Mathlib.Data.Nat.Basic should provide), we can
use it with rw.

Let’s try this in your zero add example:

Listing 3: Using the rw Tactic

import Mathlib.Data.Nat.Basic

theorem zero_add_example (n : Nat) : 0 + n = n := by

rw [Nat.zero_add]
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What to expect

1. Your goal starts as ⊣ 0 + n = n.

2. The lemma Nat.zero add states ∀ (n : Nat), 0 + n = n.

3. When you use rw [Nat.zero add], Lean sees the 0 + n on the left side of your goal. It matches this
with the left side of Nat.zero add.

4. It then replaces 0 + n in your goal with the right side of Nat.zero add, which is n.

5. Your goal becomes ⊣ n = n.

In fact, since Nat.zero add is exactly the statement 0 + n = n, applying rw [Nat.zero add] should
solve the goal directly! The Infoview should show “goals accomplished ”.

Try it out!

Replace your rfl that failed with rw [Nat.zero add]. What does the Infoview say?
This experience of rfl failing and then using rw with a known lemma is very common in Lean. It teaches

you to distinguish between what’s true by definition and what’s true because of a theorem.

3.5. Practice with rw (and maybe rfl!)

Let’s try a slightly more involved proof that might require you to think about how a rewrite changes the
goal. Consider the associativity of addition for natural numbers:

(a+ b) + c = a+ (b+ c)

In Lean’s Mathlib, the lemma for this is Nat.add assoc. It states:

Nat.add assoc (a b c : Nat) : (a + b) + c = a + (b + c)

Your Task

Prove the following theorem:

Listing 4: Associativity of Addition Practice

import Mathlib.Data.Nat.Basic -- Or your current import setup

theorem add_assoc_practice (x y z : Nat) : (x + y) + z = x + (y + z) := by

-- Your proof tactic(s) go here!

Hint:

• Your goal is (x + y) + z = x + (y + z).

• The lemma Nat.add assoc directly states this property.

What tactic (or tactics) do you think you’ll need here? Give it a try and see what happens in the Infoview!
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Example:

import Mathlib.Data.Nat.Basic -- Or your current import setup

theorem example_2 (a b : N) : (a + b) * (a + b) = a*a + 2 * a * b + b * b

:= by

rw [Nat.mul_add]

rw [Nat.add_mul]

rw [Nat.add_mul]

rw [← Nat.add_assoc]

rw [Nat.add_assoc (a * a)]

rw [Nat.mul_comm b a]

rw [← Nat.two_mul]

rw [Nat.mul_assoc]
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