
Day - 4 : Using Existing Lemmas

Touseef Haider

May 15, 2025

Study Mathematics In Lean(MIL) Section 2.2

4.1. Lean’s Vast Library of Lemmas

Lean, especially when paired with its standard mathematical library Mathlib, has a huge collection of
pre-proven theorems, called lemmas. Mathlib contains tens of thousands of lemmas about numbers theory,
algebra, topology, analysis, and much more.

Properties like:

• a + b = b + a (commutativity of addition)

• (a + b) + c = a + (b + c) (associativity of addition)

• a * (b + c) = a * b + a * c (distributivity)

...and countless others are already proven and waiting for you to use.
The skill, then, becomes:

1. Recognizing what mathematical property your goal represents.

2. Knowing how to find the name of the lemma in Lean that corresponds to that property.

How to Find Lemmas :

This is a bit of an art and a science, and it gets easier with experience. Here are common ways:

1. Guessing Standard Names: For very common properties, the names are often predictable:

• add assoc for associativity of addition.

• add comm for commutativity of addition.

• mul assoc for associativity of multiplication.

• zero add, add zero, one mul, mul one, etc.

• The type usually comes first, e.g., Nat.add assoc, Int.mul comm, Real.sqrt le sqrt iff le.

2. Mathlib Documentation: If you’re using Mathlib, the developers maintain extensive online documen-
tation. You can search this documentation for keywords.

• For example, searching the Mathlib4 docs for “associativity of addition” would quickly lead you to
Nat.add assoc or a more general add assoc.

3. The exact? Tactic (or similar): This is a very powerful tool!

• In Lean (often via Mathlib), there’s a tactic usually called exact? and apply?

• If you have a goal like ⊣ (x + y) + z = x + (y + z), and you’re stuck, you can try:

1 theorem add_assoc_practice (x y z : Nat) : (x + y) + z = x + (y + z) := by

2 exact? -- Or try ‘apply?‘

1



• Lean will then search its library for a known lemma to prove the goal. If it finds one (like
Nat.add assoc), it might suggest exact Nat.add assoc or rw [Nat.add assoc].

4. VS Code Infoview / Autocompletion: As you type, especially within rw [...], Lean’s extension
may offer name suggestions like Nat.add ..., which help narrow the options.

5. Looking at Similar Proofs: When learning, reviewing how other theorems are proven in Mathlib can
show you which lemmas are commonly used.

Specific Case:

• The goal (x + y) + z = x + (y + z) as “associativity of addition.”

• A good guess for the lemma name would involve add and assoc.

• You’d then try Nat.add assoc (since x,y,z are Nat).

• If unknown, you could use exact?, or apply?.

4.2. Finding and Stating an Existing Lemma (e.g., add comm)

Suppose you need to prove something that involves swapping the order of addition, like a + b = b + a.
This is the commutativity of addition.

1. Guessing the Name: You’d probably guess add comm or Nat.add comm.

2. Verifying and Checking the Lemma’s Statement: Before you use a lemma, it’s good practice to
check its exact statement. You can use the #check command for this. If you have the necessary imports
(like import Mathlib.Data.Nat.Basic or a more general algebra import), you can type this in your
Lean file:

1 #check Nat.add_comm

Or, for a more general version if it exists (many algebraic lemmas are generalized beyond Nat):

1 -- Import a relevant algebra module if not already imported

2 -- #check add_comm -- for the general version

If Nat.add comm is the one relevant to natural numbers, the Infoview will display its type, which is the
statement of the theorem. It would look something like:

Nat.add_comm (n m : Nat) : n + m = m + n

This confirms that Nat.add comm is indeed the lemma ∀ (n m : Nat), n + m = m + n. It takes two
natural numbers, n and m, as arguments and proves that n + m = m + n.

3. Using exact? or apply?:

If you had the goal ⊣ a + b = b + a and didn’t know the lemma name, you could write:

1 example (a b : Nat) : a + b = b + a := by

2 exact? or apply?

And Lean would likely suggest Nat.add comm.

So, the typical workflow is:

• Encounter a goal.

• Recognize the mathematical property.

2



• Try to find the lemma (guess name, search docs, use library search).

• #check the lemma to be sure it’s what you expect.

• Use it in your proof, typically with rw for equalities.

Consider the following theorem. We want to prove that if you add a and b first, and then add c, it’s the
same as adding b and a first, and then adding c. Your Goal: Prove the theorem ab plus c eq ba plus c.

1 import Mathlib.Data.Nat.Basic --

2

3 theorem ab_plus_c_eq_ba_plus_c (a b c : Nat) : (a + b) + c = (b + a) + c := by

4 -- Your proof tactics go here!

https://leansearch.net/

https://loogle.lean-lang.org/

https://www.moogle.ai/

https://www.leanexplore.com/

3

https://leansearch.net/
https://loogle.lean-lang.org/
https://www.moogle.ai/
https://www.leanexplore.com/

