
Day - 6 : Implication and Universal Quantifier

Touseef Haider

Study Mathematics In Lean(MIL) Section 3.1

6.1. Implication → :

In logic and in Lean 4, an implication is a statement of the form “ if P, then Q”. It is written as P → Q.

• P is called the hypothesis.

• Q is called the conclusion.

The statement P → Q asserts that whenever P is true, Q must also be true. It does not say anything
about whether P or Q are true on their own. Think of it as a promise: “I promise that if you give me a proof
of P, I can give you a proof of Q.”

How to prove an implication (P → Q) in Lean4:

The most common way to prove an implication P → Q is to :

• Assume P is true.

• Using that assumption, show that Q must be true.

The Lean4 tactic for this is intro. If your goal is P → Q, typing intro hP (or any other name instead
of hP) will:

• Add hP : P to your list of hypotheses (you are assuming P).

• Change your goal to Q.

Example:

Let’s say we want to prove Nat → Nat (a very simple, somewhat silly tupe, but it illustrates the point). In
a Lean file, you might have:

1 example : Nat → Nat := by

2 intro n -- n is now a hypothesis of type Nat

3 exact n -- our goal is Nat , and n is a Nat , so we are done

Here P is Nat (the input type) and Q is Nat (the output type). intro n assumes we have a natural
number n. The goal becomes to provide a Nat and n itself fulfills this.

If you already have a hypothesis h that states P → Q, and you also have a proof of P (let’s call it hP proof

: P), you can use them to get a proof of Q.
The Lean4 tactic for this is apply. If you have h : P → Q and your current goal is Q, typing apply h

will:

• Try to match Q with the conclusion of h.

• If it matches, it will change your goal to P (the premise of h). You now need to prove P.

If you have h: P → Q and also hP proof : P, you can directly get a proof of Q by writing h hP proof(standard
function application, applying function h to argument hP proof). Lean understands function application,
and implications are like functions that take a proof of P and return a proof of Q.

1

Example

Suppose we have:
P, Q : Prop (Propositions, i.e., true/false statements)
hPQ : P → Q

hP : P

And we want to prove Q.

1 variable (P Q : Prop)

2 variable (hPQ : P → Q)

3 variable (hP : P)

4

5 example : Q := by

6 apply hPQ -- Goal changes from Q to P

7 exact hP -- We have hP : P, so this closes the goal

Alternatively:

1 example : Q :=

2 hPQ hP -- This directly provides the proof of Q

This is a fundamental concept. If P implies Q, and P is true, then Q must be true. It’s like saying, “If it’s
raining (P), then ground is wet (Q). It is raining (hP). Therefore, the ground is wet.”
A little note about the notion h hP proof. This notion is standard function application. You are applying
the “function” h to the “argument” hP proof.

• Since h is of type P → Q (it expects a proof of P and yields a proof of Q)

• And hP proof is of type P (it is a proof of P),

• The result of h hP proof is an object of type Q (a proof of Q).

6.2 Universal Quantifier (∀):
The universal quantifier, written as ∀ is used to make statements about all elements of a certain type.

A statement like ∀ x : T, P x reads: “For all x of type T, the property P x holds true.”

• x is a variable.

• T is the type of x. (e.g. Nat for natural numbers, Real for real numbers)

• P x is a proposition (a statement that can be true or false) that depends on x.

How to prove a universal quantification (∀ x : T, P x) in Lean4:

To prove that a property P x holds for all x of type T, the standard method is :

• Consider an arbitrary element x from type T. you make no assumptions about x other than it being of
type T.

• Then, show that P x holds for this arbitrary x.

Example:

Let’s say we want to prove that for any natural number n, n=n.

1 example : ∀ n : Nat , n = n := by

2 intro n -- n is now an arbitrary hypothesis of type Nat

3 rfl -- The goal is n = n. ‘rfl ‘ (reflexivity) proves this.

Here, intro n picks an arbitrary natural number n. Then we need to show n=n, which rfl does.

2

How to use universal quantification (h : ∀ x : T, P x) in Lean4:

If you have a hypothesis h that states ∀ x : T, P x, it means you know that P x is true for any x you
choose from type T. So you can use this hypothesis with a specific value.

• Direct Application: If you have h : ∀ x : T, P x and a specific value val : T, then h val is a
proof of P val. This is again like function application : h is a function that takes any term of type T

and gives you a proof that P holds for that term.

• specialize tactic: If you have h : ∀ x : T, P x and you want to create a new hypothesis that P
holds for a specific value val : T (perhaps val is another hypothesis or a term you have constructed),
you can use the specialize tactic. Typing specialize h val will change the hypothesis h: ∀ x :

T, P x into h : P val.

Example:

Suppose we have :
is even : Nat → Prop (a property of natural numbers)
h all even implies something : ∀ n : Nat, is even n → Q (for some proposition Q)
h two is even : is even 2

And we want to use h all even implies something specifically for n=2.

Using direct application in a term:

1 variable (Q : Prop)

2 variable (is_even : Nat → Prop)

3 variable (h_all_even_implies_something : ∀ n : Nat , is_even n → Q)

4 variable (h_two_is_even : is_even 2)

5

6 -- We want to get a proof of (is_even 2 → Q)

7 def specific_implication : is_even 2 → Q := h_all_even_implies_something 2

8

9 -- If we wanted Q itself:

10 example : Q :=

11 (h_all_even_implies_something 2) h_two_is_even

Using the specialize tactic:

1 example (Q : Prop) (is_even : Nat → Prop)

2 (h_all_even_implies_something : ∀ n : Nat , is_even n → Q)

3 (h_two_is_even : is_even 2) : Q := by

4 -- h_all_even_implies_something : ∀ (n : Nat), is_even n → Q

5 specialize h_all_even_implies_something 2

6 -- Now , h_all_even_implies_something : is_even 2 → Q

7 apply h_all_even_implies_something

8 exact h_two_is_even

In this tactic example, after specialize h all even implies something 2, the hypothesis h all even implies something

is updated to be is even 2 → Q. Then we can apply it and use h two is even.
The universal quantifier ∀ and implication → are very closely related. In fact, P → Q can ben seen as ∀

(: P), Q where you quantify over proofs of P. This is why intro works for both.

Example:

If you have a function f that takes an element of type α and gives you an element of type β (so, f : α → β)
and another function g that takes an element of type β and gives you an element of type γ (so, g : β → γ),
then you can compose them to create a new function that takes an element of type α and gives you an
element of type γ. This new composed function, let’s call it g comp f, would behave such that g comp f a

= g (f (a)) for any a : α.

3

In Lean, we can state this as a theorem:
For any types α, β, γ, and any functions g : β → γ and f : α → β, there exists a function from α → γ
(which is g ◦ f).

1 -- This is the statement we want to prove

2 example : ∀ (α β γ : Type) (g : β → γ) (f : α → β), α → γ := by

3 -- To prove the ∀ for types , we introduce arbitrary types α, β, γ
4 intro α
5 intro β
6 intro γ
7 -- Our goal is now: (g : β → γ) → (f : α → β) → α → γ
8

9 -- To prove the ∀ for functions g and f (which are actually implications in the goal now),

10 -- we introduce arbitrary functions g and f with the specified types.

11 intro g -- g : β → γ is now a hypothesis

12 intro f -- f : α → β is now a hypothesis

13 -- Our goal is now: α → γ
14

15 -- To prove the implication α → γ, we introduce an arbitrary element ’a’ of type α
16 intro a -- a : α is now a hypothesis

17 -- Our goal is now: γ
18

19 -- We need to construct an element of type γ.
20 -- We have g : β → γ. If we can make something of type β, we can apply g to it.

21 -- We have f : α → β and a : α.
22 -- So, (f a) has type β.
23 let beta_val := f a -- This step is optional , just for clarity. beta_val has type β.
24

25 -- Now apply g to beta_val (which is f a) to get something of type γ.
26 exact (g beta_val) -- or more directly: exact (g (f a))

Let’s break down the tactics and reasoning:

• intro α, intro β, intro γ: These handle the ∀ (α β γ : Type).

• intro g, intro f: These handle the ∀ (g: β → γ) (f : α → β).

• intro a: the goal is now α → γ. To prove this implication, we assume the hypothesis a : α. Our
context adds a : α, and the goal becomes γ.

• let beta val := f a: We know f : α → β and a : α. Applying f to a gives f a, which has type
β. We can name this intermediate value beta val. This is using our hypothesis f.

• exact (g beta val) or exact (g (f a)): We know g : β → γ and beta val (which is f a) has
type β. Applying g to beta val gives g beta val, which has type γ. This matches our goal, so exact

completes the proof for this branch.

This example shows intro being used for both universal quantifiers (over types and over specific func-
tions which themselves are implications) and for the final implication (to get a : α). Then, it uses the
hypotheses (which are functions/implications) by applying them (f a and g (. . .)).

Function composition is so common that there’s an operator ◦ for it, so you could also define the composed
function as g ◦ f.

4

