Day - 6 : Implication and Universal Quantifier

Touseef Haider

Study Mathematics In Lean(MIL) Section 3.1

6.1. Implication — :
In logic and in Lean 4, an implication is a statement of the form “ if P, then Q”. It is written as P — Q.

e P is called the hypothesis.

e (is called the conclusion.

The statement P — Q asserts that whenever P is true, @ must also be true. It does not say anything
about whether P or Q are true on their own. Think of it as a promise: “I promise that if you give me a proof
of P, I can give you a proof of Q.”

How to prove an implication (P —) in Lean4:
The most common way to prove an implication P — Q is to :

e Assume P is true.

e Using that assumption, show that Q must be true.

The Lean4 tactic for this is intro. If your goal is P — Q, typing intro hP (or any other name instead
of hP) will:

e Add hP : P to your list of hypotheses (you are assuming P).

e Change your goal to Q.

Example:

Let’s say we want to prove Nat — Nat (a very simple, somewhat silly tupe, but it illustrates the point). In
a Lean file, you might have:

1 example : Nat — Nat := by
2 intro n -- n is now a hypothesis of type Nat
3 exact n -- our goal is Nat, and n is a Nat, so we are done

Here P is Nat (the input type) and Q is Nat (the output type). intro n assumes we have a natural
number n. The goal becomes to provide a Nat and n itself fulfills this.

If you already have a hypothesis h that states P — @, and you also have a proof of P (let’s call it hP_proof

P), you can use them to get a proof of Q.

The Leand4 tactic for this is apply. If you have h : P — Q and your current goal is Q, typing apply h
will:

e Try to match Q with the conclusion of h.
e If it matches, it will change your goal to P (the premise of h). You now need to prove P.

Ifyouhaveh: P — QandalsohP_proof : P, you can directly get a proof of Q by writing h hP_proof (standard
function application, applying function h to argument hP_proof). Lean understands function application,
and implications are like functions that take a proof of P and return a proof of Q.

Example

Suppose we have:

P, Q : Prop (Propositions, i.e., true/false statements)
hPQ : P — Q

hP : P

And we want to prove Q.

variable (P Q : Prop)
variable (hPQ : P — Q)
variable (hP : P)

N

5 example : Q := by

6 apply hPQ -- Goal changes from Q to P

7 exact hP -- We have hP : P, so this closes the goal
Alternatively:

1 example : Q :=

2 hPQ hP -- This directly provides the proof of Q

This is a fundamental concept. If P implies Q, and P is true, then Q must be true. It’s like saying, “If it’s
raining (P), then ground is wet (Q). It is raining (hP). Therefore, the ground is wet.”
A little note about the notion h hP_proof. This notion is standard function application. You are applying
the “function” h to the “argument” hP_proof.

e Since h is of type P — Q (it expects a proof of P and yields a proof of Q)
e And hP_proof is of type P (it is a proof of P),

e The result of h hP_proof is an object of type Q (a proof of Q).

6.2 Universal Quantifier (V):

The universal quantifier, written as V is used to make statements about all elements of a certain type.
A statement like V x : T, P xreads: “For all x of type T, the property P x holds true.”

e x is a variable.
e T is the type of x. (e.g. Nat for natural numbers, Real for real numbers)

e P x is a proposition (a statement that can be true or false) that depends on x.

How to prove a universal quantification (Vv x : T, P x) in Lean4:

To prove that a property P x holds for all x of type T, the standard method is :

e Consider an arbitrary element x from type T. you make no assumptions about x other than it being of
type T.

e Then, show that P x holds for this arbitrary x.

Example:

Let’s say we want to prove that for any natural number n, n=n.

1 example : V n : Nat, n = n := by
2 intro n -- n is now an arbitrary hypothesis of type Nat
3 rfl -- The goal is n = n. ‘rfl‘ (reflexivity) proves this.

Here, intro n picks an arbitrary natural number n. Then we need to show n=n, which rfl does.

How to use universal quantification (h : V x : T, P x) in Lean4:

If you have a hypothesis h that states V x : T, P x, it means you know that P x is true for any x you
choose from type T. So you can use this hypothesis with a specific value.

e Direct Application: If you haveh : V x : T, P x and a specific value val : T, then h val is a
proof of P val. This is again like function application : h is a function that takes any term of type T
and gives you a proof that P holds for that term.

e specialize tactic: If you haveh : V x : T, P x and you want to create a new hypothesis that P
holds for a specific value val : T (perhaps val is another hypothesis or a term you have constructed),
you can use the specialize tactic. Typing specialize h val will change the hypothesish: V x :
T, P xintoh : P val.

Example:

Suppose we have :

is_even : Nat — Prop (a property of natural numbers)
h_all even implies_something : V n : Nat, is_even n — Q (for some proposition Q)
h_two_is_even : is_even 2

And we want to use h_all _even_implies_something specifically for n=2.

Using direct application in a term:

variable (Q : Prop)

variable (is_even : Nat — Prop)

variable (h_all_even_implies_something : V n : Nat, is_even n — Q)
variable (h_two_is_even : is_even 2)

-- We want to get a proof of (is_even 2 — Q)
def specific_implication : is_even 2 — Q := h_all_even_implies_something 2

-- If we wanted Q itself:
example : Q :=
(h_all_even_implies_something 2) h_two_is_even

Using the specialize tactic:

example (Q : Prop) (is_even : Nat — Prop)

(h_all_even_implies_something : V n : Nat, is_even n — Q)
(h_two_is_even : is_even 2) : Q := by
-- h_all_even_implies_something : V (n : Nat), is_even n — Q
specialize h_all_even_implies_something 2
-- Now, h_all_even_implies_something : is_even 2 — Q

apply h_all_even_implies_something
exact h_two_is_even

In this tactic example, after specialize h_all _even_implies_something 2, the hypothesish_all_even_implies_someth:
is updated to be is_even 2 — Q. Then we can apply it and use h_two_is_even.

The universal quantifier V and implication — are very closely related. In fact, P — Q can ben seen as V
(_ : P), Q where you quantify over proofs of P. This is why intro works for both.

Example:

If you have a function f that takes an element of type « and gives you an element of type § (so, f: a —)
and another function g that takes an element of type 8 and gives you an element of type v (so, g : 8 — 7),
then you can compose them to create a new function that takes an element of type a and gives you an
element of type v. This new composed function, let’s call it g_comp_f, would behave such that g_comp_f a
=g (f () forany a : «.

In Lean, we can state this as a theorem:
For any types a, 8,7, and any functions g : S —~vyand f : « — f, there exists a function from o —
(whichis g o f).
-- This is the statement we want to prove
example : V (a 8 v : Type) (g : B — v) (f : a — B), o — v := by
-- To prove the V for types, we introduce arbitrary types «, 5, 7
intro «
intro f8
intro vy
-- Our goal is now: (g : B8 — 7)) — (£ : o — B) = a — v

-- To prove the V for functions g and f (which are actually implications in the goal now),
-- we introduce arbitrary functions g and f with the specified types.

intro g -- g : B — v is now a hypothesis

intro £f -- f : a — [is now a hypothesis

-- Our goal is now: a — 7

-- To prove the implication o — 7, we introduce an arbitrary element ’a’ of type «
intro a -- a : « is now a hypothesis
-- Our goal is now: v

-- We need to construct an element of type 7.

-- We have g : 8 — . If we can make something of type [, we can apply g to it.

-- We have f : a — (B and a : a.

-- So, (f a) has type f[.

let beta_val := f a -- This step is optional, just for clarity. beta_val has type [.

-- Now apply g to beta_val (which is f a) to get something of type 7.
exact (g beta_val) -- or more directly: exact (g (f a))

Let’s break down the tactics and reasoning:

e intro a, intro S, intro 7: These handle the V. (@ B v : Type).
e intro g, intro f: These handletheV (g: S —7v) (f : a—).

e intro a: the goal is now a — «y. To prove this implication, we assume the hypothesis a : «a. Our
context adds a : «, and the goal becomes 7.

e let betaval := f a: Weknowf : o — fanda : «. Applying f to a gives £ a, which has type
B. We can name this intermediate value beta_val. This is using our hypothesis £.

e exact (g betaval) or exact (g (f a)): We know g : [— ~ and beta_val (which is £ a) has
type 8. Applying g to beta_val gives g beta_val, which has type . This matches our goal, so exact
completes the proof for this branch.

This example shows intro being used for both universal quantifiers (over types and over specific func-
tions which themselves are implications) and for the final implication (to get a : «). Then, it uses the
hypotheses (which are functions/implications) by applying them (f aandg C . . .)).

Function composition is so common that there’s an operator o for it, so you could also define the composed
function as g o f.

