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7.1. Existential Quantifier ∃ :

The existential quantifier, written as ∃, is used to assert that there exists at least one element of a certain
type that satisfies a given property.

A statement like ∃ x : T, P x reads:
“There exists an x of type T such that the property P x holds true.”

The key difference from the universal quantifier ∀ is that ∀ x : T, P x claims P x is true for all x in
T, while ∃ x : T, P x only claims that it is true for at least one x in T. It does not have to be true for all
of them, and it doesnot specify which one(s) satisfy the property, just that such an element exists.

For example:

• ∃ n : Nat, n > 5 means “There exists a natural number n such that n is greater than 5.”

• ∃ s : String, s.length > 10 means “There exists a string s such that its length is greater than
10.”

• ∃ x : Nat, x + 1 = 0 means “There exists a natural number x such that x+1=0. (This is false for
natural numbers).

There are two main scenarios: proving an existential statement and using an existential statement that
is already a hypothesis.

Proving an Existential Statement :

To prove ∃ x : T, P x, you need to do two things:
The Lean4 tactic for this is exists. If your goal is ∃ x : T, P x, you can type: exists x val. This

will:

• Substitute x val for x in the property P x.

• Change your goal to proving P x val.

You then proceed to prove this new goal.

Example

Let’s prove ∃ n : Nat, n > 5 .

1 example : ∃ n : Nat , n > 5 := by

2 exists 6 -- We provide the witness ’6’

Here exists 6 tells Lean, “I claim that 6 is the natural number that satisfies the property.”. The goal
then becomes 6 > 5, which is true.

7.2. Using an Existential Hypothesis

When you have h : ∃ x : T, P x, you know some x exists satisfying P x. You need to “open it up” to
access that x and the proof of P x.
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Using rcases

The rcases tactic (recursive cases) is very convenient here. If you have h : ∃ x : T, P x, you can write:
rcases h with ⟨x name, h property⟩.

This will:

• Introduce a new variable x name : T (the witness).

• Introduce a new hypothesis h property : P x name (the proof that the witness satisfies the prop-
erty).

• The original hypothesis h is typically cleared.

Using cases

The syntax, cases h exists with | intro n h n gt 5 => ...proof..., is a way to use cases. The
intro here is used to name the components destructured from the existential. A more direct way to write
this specific pattern for Exists (whose constructor is Exists.mk) would often be: cases h exists with

| mk n h n gt 5 => ...proof... or using the anonymous constructor notation: cases h exists with |

⟨n, h n gt 5⟩ => ...proof...

Syntax | intro n h n gt 5 => effectively does the same: it introduces n as the witness and h n gt 5 as
the property for that witness within the scope of that case.

Example:

Suppose we know h exists : ∃ n : Nat, n > 5 and h universal : ∀ k : Nat, k > 5 → k2 >
25. We want to prove ∃ m : Nat, m2 > 25.

Using rcases:

1 example (h_exists : ∃ n : Nat , n > 5)

2 (h_universal : ∀ k : Nat , k > 5 → k^2 > 25) :

3 ∃ m : Nat , m^2 > 25 := by

4 -- Use the existential hypothesis h_exists

5 rcases h_exists with ⟨ n, h_n_gt_5 ⟩
6 -- Now we have in our context:

7 -- n : Nat

8 -- h_n_gt_5 : n > 5

9

10 -- We want to prove ∃ m : Nat , m^2 > 25.

11 -- Let ’s use ’n’ (our destructured witness) as our witness for ’m’.

12 exists n

13 -- New goal: n^2 > 25

14

15 -- We can use h_universal.

16 exact h_universal n h_n_gt_5

Using cases :

1 example (h_exists : ∃ n : Nat , n > 5)

2 (h_universal : ∀ k : Nat , k > 5 → k^2 > 25) :

3 ∃ m : Nat , m^2 > 25 := by

4 cases h_exists with

5 | intro n h_n_gt_5 =>

6 -- Context within this case:

7 -- n : Nat

8 -- h_n_gt_5 : n > 5

9

10 -- We want to prove ∃ m : Nat , m2 > 25.
11 -- Let ’s use ’n’ as our witness for ’m’.

12 exists n

13 -- New goal: n^2 > 25

14

15 -- Use h_universal

16 let h_prop_for_n := h_universal n -- h_prop_for_n : n > 5 → n^2 > 25

17 exact h_prop_for_n h_n_gt_5
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The expression h prop for n h n gt 5 is function application. The implication h prop for n acts like a
function that takes a proof of its premise (n > 5 ) and returns a proof of its conclusion (n2 > 25).

Both rcases and this cases syntax achieve the same goal of deconstructing the existential. rcases is
often favored for its brevity when dealing with nested existentials or conjunctions, as it can deconstruct them
in one go.

7.3. Simple Lean4 Examples Demonstrating Existential Quantification:

Theorem to Prove:

If we have two properties, P and Q, defined over some type α, and we know that for any element x of α, if
P x is true then Q x is true. Then, if there exists an element for which P is true, there must also exist an
element for which Q is true.

1 import Std.Tactic -- rcases is often in Std , but good to note imports

2

3 example (α : Type) (P Q : α → Prop)

4 (h_all_P_implies_Q : ∀ x : α, P x → Q x)

5 (h_exists_Px : ∃ x : α, P x) :

6 ∃ x : α, Q x := by

7 -- We have h_exists_Px : ∃ x, P x.

8 -- This tells us there is some element that satisfies P. Let ’s get it.

9 -- The ‘rcases ‘ tactic will extract the witness (let ’s call it ’w’)

10 -- and the proof that w satisfies P (let ’s call it h_Pw).

11 rcases h_exists_Px with ⟨ w, h_Pw ⟩
12 -- Now in our context we have:

13 -- w : α
14 -- h_Pw : P w

15

16 -- Our goal is to prove ∃ x : α, Q x.

17 -- We need to provide a witness for x. A good candidate is ’w’.

18 -- Let ’s claim that ’w’ is the element that satisfies Q.

19 exists w

20 -- The new goal is now to prove: Q w

21

22 -- Now we need to show Q w.

23 -- We have h_all_P_implies_Q : ∀ x : α, P x → Q x.

24 -- This means for any x, if P x holds , then Q x holds.

25 -- Let ’s apply this general rule to our specific witness ’w’.

26 -- (h_all_P_implies_Q w) gives us a proof of (P w → Q w).

27 let h_Pw_implies_Qw := h_all_P_implies_Q w

28 -- So, h_Pw_implies_Qw : P w → Q w

29

30 -- We also have h_Pw : P w.

31 -- We know that if P w implies Q w, and P w is true , then Q w must be true.

32 -- We can use ’exact ’ with the application of h_Pw_implies_Qw to h_Pw.

33 exact (h_Pw_implies_Qw h_Pw)

Let’s trace the logic and tactics:

1. rcases h exists Px with ⟨ w, h Pw ⟩:

• We start with h exists Px : ∃ x : α, P x. This hypothesis asserts the existence of an
element satisfying P.

• rcases deconstructs this. It introduces:

– w : α : This is the specific witness whose existence was asserted by h exists Px.

– h Pw : P w: This is the proof that our witness w indeed satisfies the property P.

2. exists w:

• Our goal is ∃ x : α , Q x. We need to provide a witness for x such that Q x holds.

• The most natural candidate for this witness is the w we just obtained from h exists Px.

• The exists w tactic states our claim: “ Yes, such an x exists, and it is w.”
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• This changes the goal to proving Q w. We now need to show that our chosen witness w actually
satisfies Q.

3. let h Pw implies Qw := h all P implies Q w:

• We have the universal hypothesis h all P implies Q : ∀ x : α, P x → Q x.

• Since this holds for all x, it must hold for our specific w.

• Applying h all P implies Q to w (i.e. h all P implies Q w) gives us specific implication for w:
P w → Q w.

• We name this specific implication h Pw implies Qw.

4. exact (h Pw implies Qw h Pw):

• Our goal is Q w.

• We have h Pw implies Qw : P w → Q w.

• We also have h Pw : P w.

• This is exactly the setup for function application. Applying the function h Pw implies Qw to the
argument h Pw yields a proof of Q w.

• exact takes this proof of Q w and closes the goal.

This example demonstrates the workflow:

• Using an existential (rcases).

• Proving an existential (exists).

• Leaveraging universal quantifiers and implications along the way.
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