
Day - 8 : Negation and Proof by Contradiction

Touseef Haider

Study Mathematics In Lean(MIL) Section 3.3

Negation ¬ :

Logically ¬ P (read as ”not P”) means that the proposition P is false. In Lean4, ¬ P is often defined as
implication ¬ P := P → false. Where false is a proposition that is inherently false (it has no proofs).
So, ¬ P means “if P is true, it would lead to a Contradiction (false)”. This definition is very powerful because
it allows us to use the tactics we already know for implications (like intro) to prove negations.

Proving ¬ P :

If you want to prove ¬ P, given that ¬ P is P → false, you would typically use the intro tactic:

• Assume P is true (e.g., intro hP where hP : P).

• Your goal becomes False.

• You then need to derive a contradiction (False) from hP and any other available hypotheses.

Using ¬ P (i.e., h : P → False):

If you have a hypothesis h : ¬ P (which means h : P → False), and you also manage to derive a proof
of P (say, hP proof : P), then you can obtain a proof of False by applying h to hP proof : h hP proof

would be a proof of False.
This P → False definition of negation is quite elegant.
A proof by contradiction works like this:

• To prove a proposition P : Assume ¬ P is true. If this assumption leads to logical impossibility (a
contradiction, or False), then the original assumption ¬ P must be false, which means P must be true.

• To prove ¬ P: Assume P is true. If this leads to False, then P must be false, so ¬ P is true.

Lean’s core logic is constructive. In constructive logic, proving P by assuming ¬ P and deriving False is how
¬¬ P is proven. To get from ¬¬ P to P (which is what “proof by contraction for P” often implies) typically
requires an appeal to classical logic, specifically the Law of Excluded Middle (P ∨ ¬ P). Lean4 allows you
to use classical reasoning.

1. The by contra Tactic : When you want to prove a proposition P using classical proof by contradiction,
you can use the by contra tactic. If your goal is P, and you use by contra h np (where h np is a name
you choose for the new hypothesis). This tactic will:

• Add h np : ¬ P (i.e., h np : P → False) to your hypotheses.

• Change your goal to False.

You then need to use h np and other available facts to derive a contradiction.

1 example (P : Prop) -- ... other hypotheses ... : P := by

2 by_contra h_not_P -- Assume h_not_P : ¬P, goal becomes False

3 -- ... proof steps to derive False ...

4 -- For instance , if you can show P from other means (call it h_P_somehow):

5 -- exact (h_not_P h_P_somehow) -- This would be h_not_P (P → False) applied to P,

yielding False

1

2. The absurd Tactic: The absurd tactic is useful when you have already derived both a proposition P

and its negation ¬ P in your context, and you want to conclude False (or even close any goal, because
from False, anything follows by False.elim). If you have

• hP : P

• hnP : ¬ P (which is P → False

Then absurd hP hnP will prove False. Since anything follows from False (this is known as the
principle of explosion, or False.elim in Lean), if your goal is , say , Q, and you can show False by
absurd hP hnPP, then absurd hP hnP can close the goal Q.

1 example (P Q : Prop) (hP : P) (hnP : ¬P) : Q := by

2 -- We have P and ¬P, which is a contradiction.

3 -- From a contradiction , any goal Q can be proven.

4 exact absurd hP hnP -- The type of ’absurd hP hnP ’ is False.

5 -- ’exact ’ uses False.elim to make it match goal Q.

6 -- Or more explicitly:

7 example (P Q : Prop) (hP : P) (hnP : ¬P) : Q := by

8 have h_false : False := absurd hP hnP

9 exact False.elim h_false

Often, if your goal is False directly, you might use exact (hnP hP). The absurd tactic can be a bit
more expressive or useful if the goal isn’t immediately False but you have reached a contradiction.

A note on classical logic:

The by contra tactic effectively assumes the law of exluded middle (P ∨ ¬ P) for the proposition P. If
you are working within purely constructive mathematics, you would avoid by contra for proving positive
(non-negated) statements unless ¬¬ P → P is constructively provable for that specific P. However, for much
of standard mathematics formalized in Lean, classical logic (and thus by contra) is commonly used.

Example - 1

A common classical result is that if the contrapositive (¬ Q → ¬ P) holds, then (P → Q) also holds.
Remembering that ¬ X is X → False, the statement is :

((Q → False) → (P → False)) → (P → Q).
We will prove this using by contra.
Theorem : ∀ (P Q : Prop), ((Q → False) → (P → False)) → (P → Q).

1 example (P Q : Prop) (h_contrapositive : (Q → False) → (P → False)) : P → Q := by

2 -- Our goal is P → Q.

3 -- To prove an implication , we introduce the hypothesis.

4 intro hP

5 -- Now , hP : P is a hypothesis.

6 -- Our goal is Q.

7

8 -- At this point , proving Q directly might be tricky.

9 -- Let ’s try to prove Q by contradiction.

10 -- We assume ¬ Q (not Q) and aim to derive False.

11 by_contra hnQ

12 -- Now , hnQ : ¬Q (which means hnQ : Q → False) is a hypothesis.

13 -- Our goal has changed to False.

14

15 -- We have h_contrapositive : (Q → False) → (P → False).

16 -- We also have hnQ : Q → False.

17 -- We can apply h_contrapositive to hnQ.

18 let hnP := h_contrapositive hnQ

19 -- Now , hnP : P → False (which means hnP : ¬P).
20

21 -- We have hP : P (from the ’intro hP ’ earlier).

22 -- And we just derived hnP : ¬P.
23 -- So, we have P and ¬P, which is a contradiction.

24 -- Applying hnP (which is P → False) to hP (which is P) gives False.

2

25 exact (hnP hP)

26 -- This proves False , which was our goal after ’by_contra ’.

1. intro hP:

• Our initial goal is P → Q. The standard way to prove this is to assume P and then prove Q.

• intro hP adds hP : P to our hypotheses, and the goal becomes Q.

2. by contra hnQ:

• We are now trying to prove Q. We decide to use proof by contradiction. by contra hnQ does two
things. First, it adds hnQ : ¬ Q (which is Q → False) to our hypotheses. We are assuming Q is
flase. Second, it changes our goal to False. The staretgy is now to show that assuming ¬Q (along
with P) leads to a contradiction.

3. let hnP := h contrapositive hnQ:

• We have our main hypothesis h contrapositive : (Q → False) → (P → False).

• We also have hnQ : Q → False from our by contra step.

• We can apply h contrapositive to hnQ. Since h contrapositive is a function expecting an
argument of type (Q → False), and (P → False).

• We name this hnP. So, hnP : P → False (which means hnP :¬ P).

4. exact (hnP hP):

• At this point, our goal is False.

• We have hP : P.

• We have hnP : P → False.

• Applying hnP to hP gives us a proof of False.

• exact uses this proof of False to satisfy the goal.

This successfully shows that if ¬ Q leads to False, then our initial setup implies a contradiction, thus proving
Q.

Example - 2

In the example above, the last step was exact (hbP hP). Since hnP is ¬ P and hP is P, this directly yields
False. We could also have written:

1 -- ..

2 -- let hnP := h_contrapositive hnQ -- hnP : ¬ P

3 -- We have hP : P

4 exact (absurd hP hnP)

Here, absurd hP hnP recognizes that hP and hnP are contradictory and itself evaluates to a proof of False.
So exact (absurd hP hnP) also closes the goal. The absurd tactic can be more explicit when you want to
highlight that you are using a direct contradiction between two existing hypotheses.

Asymmetry of Less Than a < b → ¬ b < a

1 variable (a b : R)
2

3 example (h : a < b) : ¬ b < a := by

4 -- ¬ P mean P → False. So we assume b < a and try to prove False.

5 intro h’ -- Assume h’ : b < a

6 -- We have h : a < b and h’ : b < a

7 -- lt_trans is the transitivity rule: x < y → y < z → x < z.

8 -- If we apply it to h and h’ we get a < a

3

9 have : a < a := lt_trans h h’

10 -- Now we have a < a

11 -- lt_irrefl a is the irreflexivity rule : a < a → False.

12 apply lt_irrefl a this

13 -- This gives us ‘False ’, which was our goal after intro h’.

Standard Negation Lemmas for Inequalities

These #check commands show the type of important lemmas from mathlib. They are often based on the
law of trichotomy (for any a, b, exactly one of a<b , a=b or a >b holds) and require classical logic.

1 #check (not_le_of_gt : a > b → ¬ a ≤ b)

2 #check (not_lt_of_ge : a ≥ b → ¬ a < b)

3 #check (lt_of_not_ge : ¬ a ≥ b → a < b)

4 #check (le_of_not_gt : ¬ a > b → a ≤ b)

Negating a Universal Statement about Monotonicity

1 -- Goal : Prove that it is not true that every monotone function f has the property that f a

≤ f b → a ≤ b.

2 example : ¬ ∀ {f : R → R}, Monotone f → ∀ {a b}, f a ≤ f b → a ≤ b := by

3 -- We need to prove ¬ P. So we assume P and aim for False.

4 intro h -- Assume : ∀ {f : R → R }, Monotone f → ∀ {a b : R }, f a ≤ f b → a ≤ b

5 -- To show a universal statement is false , we need a counterexample.

6 -- Our counterexample is the constant function f(x)=0

7 let f := fun x : R 7→ (0 : R)
8

9 -- First , we need to prove our counterexample function IS monotone

10 have monof : Monotone f := by

11 -- To prove Monotone f, we need to show x ≤ y → f x ≤ f y

12 intros x y h__xy -- Assume x ≤ y . Goal is f x ≤ f y.

13 -- Since f x = 0 and f y = 0, the goal is 0 ≤≤ 0

14 -- le_refl 0 proves 0 ≤ 0

15 rfl

16

17 -- Now let ’s pick a specific a and b to make the implication fail.

18 -- We want f a ≤ f b to be true , but a ≤ b to be false.

19 -- Let a =1 and b=0. Then a ≤ b is 1 ≤ 0 , which is false.

20 -- f 1 ≤ f 0 is 0 ≤ 0 which is true.

21 have h’ : f 1 ≤ f 0 := le_refl _

22

23 -- Now , let ’s use our assumption monof

24 -- It claims that For our f (since it is monotone), f a ≤ f b → a ≤ b must hold for all

a and b

25 -- Let ’s apply it to our f and monof

26 have : (1 : R) ≤ 0 := h monof h’

27

28 linarith

Proving x ≤ 0 using le of not gt

1 -- Goal : If x is less than every positive ϵ , then x ≤ 0.

2 example (x : R) (h : ∀ ϵ > 0, x < ϵ) : x ≤ 0 := by

3 -- We want to use le_of_not_gt. This lemma states : ¬ x > 0 → x ≤ 0.

4 -- So if we can prove ¬ x > 0, we are done.

5 apply le_of_not_gt

6 -- Our new goal is ¬ x > 0, which mean x > 0 → False.

7 intro hx -- Assume x > 0. Goal is False.

8 -- Take ϵ = x, which is > 0 since hx : x > 0

9 specialize h x hx

10 -- But then x < x, which is impossible

11 exact lt_irrefl x h

4

Principle of Explosion

1 variable (a : N)
2

3 -- Goal : If 0 < 0 (a false statement), then a > 37 (an arbitrary statement)

4 example (h : 0 < 0) : a > 37 := by

5 -- From a false statement , anything follows.

6 -- exfalso changes the current goal to False.

7 -- We are now saying I can prove False , therefore I can prove anything.

8 exfalso

9 -- Our goal is now False.

10 -- We can prove False because we know 0 < 0 is impossible.

11 -- lt_irrefl 0 is 0 < 0 → False.

12 apply lt_irrefl 0 h

5

