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Abstract

A significant challenge in knot theory is the computation of geometric invariants, as the
computational complexity increases exponentially with the crossing number. This paper
presents a closed algebraic formula for the meridian length of an infinite family of alternating
links with two components. The infinite family is obtained by the closure of the 4-braids(
σ−1

2 σ1σ3σ−1
2

)n for odd n ≥ 3.
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1 Introduction
For a link in S3 whose complement admits a complete hyperbolic structure, the Mostow-Prasad
rigidity theorem shows the uniqueness of this structure. Consequently, the complete hyperbolic
structure is an invariant of the link. Each component of the link has a cusp neighborhood with a
torus boundary. The hyperbolic structure of the link complement induces a Euclidean structure
on this boundary torus. The hyperbolic structure yields several invariants, including hyperbolic
volume, cusp shapes, cusp area, and the lengths of geodesic, etc.

A central question in this context is finding a closed geodesic in the link complement
that minimizes length. The shortest such geodesic is called meridian, which travels around the
cusp boundary of link complement. By 2π-theorem [1], the length of the meridian on the torus
boundary is bounded above by 2π. Agol [2] and Lackenby [3] further improved this bound to 6.
Many other attempts have been made to refine this upper bound. Agol [2] constructed a family
of knots by performing Dehn fillings on one component of the Borromean ring, and the meridian
length of this family approaches to 4.

It is well-known that any knot can be obtained by performing Dehn filling on a fully
augmented link. The length of the meridian in fully augmented links is bounded above by 2 due
to the work of Futer and Purcell [4] and Schoenfield [5]. Furthermore, Purcell [6] has constructed
a family of knots via Dehn fillings on generalized augmented links, and the meridian lengths of
this family approach 4 from below.

Adams et al. [7] established bounds on meridian lengths of knots in terms of crossing
number n. The upper bound on meridian lengths is 6 − 7/n for general knots and 3 − 6/n
for alternating knots. The family of 2-bridge knots have the meridian length less than 2 [8].
Thistlethwaite and Tsvietkova have discussed an infinite family of 3-braids

(
σ1σ−1

2

)n
, n ≥ 3
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and shown that the meridian length of this family converges to
√

3 as n → ∞ [9, 10]. In [11],
another family of 4-braids, given by (σ1σ3σ−1

2 )k for k > 2, is presented in Example 6.1. However,
the author does not compute the meridian length. Instead, they demonstrate that the crossing
arcs are isotopic to geodesics by using certain labels and their respective ratios.

In this work, we compute the meridian length for an infinite family of alternating links
with two components, specifically those formed by the closure of the braid

(
σ−1

2 σ1σ3σ−1
2

)n
for

odd n ≥ 3. The diagram of this family is a connected prime alternating diagram and hence by
Menasco’s [12] result this family of links is hyperbolic. We will give an algebraic expression for
the meridian length in terms of the crossing number n.

2 Preliminaries
Definition 2.1. [13, Section 3.1] An edge of a link diagram is its segment (an arc) from a
crossing to the nearest crossing. Any link diagram with n crossings has 2n edges.

Definition 2.2. [14, Definition 4.9] Let M be a 3-manifold with torus boundary. Define a cusp,
or cusp neighborhood of M to be a neighborhood of ∂M homeomorphic to the product of a torus
and an interval, T 2 × I. Define a cusp torus to be a torus component of ∂M , or the boundary of
a cusp. A hyperbolic structure on M induces an affine structure on the boundary of any cusp of
M .

Definition 2.3. [14, Definition 2.18] A horosphere about ∞ in ∂H3 is a plane parallel to C,
consisting of points {(x + iy, c) ∈ C × R} where c > 0 is constant. Note for any c > 0, this plane
is perpendicular to all geodesics through ∞. When we apply an isometry that takes ∞ to some
p ∈ C, note a horosphere is taken to a Euclidean sphere tangent to p. By definition, this is a
horosphere about p. A horoball is the region interior to a horosphere.

The metric on H3 induces a metric on a horosphere. For a horosphere {(x + iy, c)
∈ C × R} about ∞, the metric is just the Euclidean metric, rescaled by 1

c . We may apply
an isometry to any horosphere, taking it to one about ∞. Thus the induced metric on any
horosphere will always be Euclidean.

Theorem 2.4. [14, Proposition 14.1] A complete hyperbolic 3-manifold contains an embedded
horoball neighborhood. That is, there is an embedded neighborhood N of the cusps of M such
that N lifts to a disjoint collection of embedded horoballs in H3.

Lemma 2.5. [14, Lemma 14.2] Suppose N is an embedded horoball neighborhood of a cusp of
M that lifts to the horoball about ∞ ∈ ∂∞H3. Then all the lifts of N to H3 give countably many
horoballs in H3, with centers at the points {g(∞) | g ∈ Γ}.

Corollary 2.6. [14, Corollary 14.3] Let M be finite volume. Any embedded horoball neighborhood
about all cusps of M lifts to countably many disjoint horoballs in H3.

Definition 2.7. [14, Definition 14.4] A maximal cusp neighborhood is an (open) embedded
cusp neighborhood for M that is maximal in the sense that no cusp can be expanded while
keeping the set of cusps embedded and disjoint.

Definition 2.8. [14, Definition 14.5] Consider the lift of an embedded maximal cusp neighbor-
hood to H3, with one cusp lifting to a horoball at infinity. A full-sized horoball is a horoball
in this pattern that is tangent to the horoball at infinity. Viewed from infinity, it has maximal
Euclidean diameter.
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(a) (b)

Figure 1: (a): A diagram illustrating the link of two components, created using SnapPy. (b):
Horoballs packing of the link complement, also using SnapPy.

Lemma 2.9. [14, Lemma 14.7] Let M be a hyperbolic 3-manifold with at least one cusp. In a
horoball pattern in H3 given by lifting an embedded maximal cusp neighborhood for M , apply
any isometry taking a desired horoball to the one at infinity. Then in the new pattern obtained
by applying this isometry, there is at least one full-sized horoball meeting a fundamental domain
for the boundary of the horoball about infinity. Moreover, if M has only one cusp, then there are
at least two full-sized horoballs in a fundamental domain. The second is often called the Adams
horoball.

3 Main Result : Formula for the Exact Length of the Meridian
The hyperbolic link complement S3 − L can be lifted in the hyperbolic 3-space H3. Each
component of the link L has a cusp neighborhood (see Definition 2.2) that is homeomorphic
to T × [1, ∞), where T denotes the boundary torus. The preimage of a cusp neighborhood in
the link complement within H3 consists of a set of horoballs. Expanding these horoballs until
they are tangent to the horoball at infinity, we obtain what are called full-sized horoballs (see
Definition 2.8). When the maximal cusp (see Definition 2.7) of the link complement has finite
volume, all cusp neighborhoods lift to countably many disjoint horoballs in hyperbolic 3-space
H3 [14, Corollary 14.3].

Let Γ denote the group of isometries of H3, and let Γ∞ be the subgroup consisting of
parabolic isometries that fix the point {∞}. The fundamental domain of Γ∞ is represented by a
parallelogram in the xy-plane. By selecting the vertices of this parallelogram to coincide with
the centers of four full-sized horoballs and aligning one edge with the shortest translation of a
parabolic isometry in Γ∞, the Euclidean length of this edge in the scaled model corresponds
to the meridian length l of the torus boundary. The following two results from [15] provide
formulas for the diameter of a horoball, which are essential in determining the meridian length l.

Lemma 3.1. [15, Lemma 2.6] Up to the action of Γ∞, every horoball other than H∞ has a
horoball of the same diameter paired to it, which is called an associated horoball.

Lemma 3.2. [15, Lemma 2.8] Given a horoball H of diameter k in the horoball packing, both
it and its associated horoball H ′ have a pair of horoballs on either side of them with centers at a
distance k/l from the centers of H and H ′, and with diameter k/l2.

Expanding the horoball and scaling the horizontal horosphere at height z = 1 yields a
horoball with the diameter of 1/l2 by Lemma 3.2.
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Thistlethwaite and Tsvietkova [9, 10], developed an alternative method for computing
the complete hyperbolic structure. This construction is based on a link diagram that is taut.
Every alternating link admit taut diagram [9, 10], hence the under discussion 4-braid admits a
taut diagram. A link diagram consists of crossings and edges. Thistlethwaite and Tsvietkova
define the crossing parameter w and edge parameter u. The crossing parameter w is associated
with an arc ∼

γ in hyperbolic 3-space H3. Specifically, the arc ∼
γ is a lift of an arc γ situated

within the link complement between a crossing. If the arc γ connects the same torus boundary
component, then the absolute value of w associated with γ, i.e., | w | is the Euclidean diameter
of the maximal horoball in H3.

By using hyperbolic geometry, one can analytically derive the Euclidean diameter of the
associated horoball. We fix | w |= e−d where d denotes the hyperbolic distance between two
horospheres:

| w |= e−d = e−ln l2
1 = eln 1

l2 = 1
l2

Combining the above result with the argument in Lemma 3.2, we conclude that the
meridian length l is given by | w |−

1
2 .

If the arc γ connects distinct torus boundary components, then | w | represents the
diameter of the horoball, with both horoballs expanding simultaneously. These horoballs corre-
spond to the two distinct boundary components joined by γ. Thistlethwaite conjectures that
when the horoballs are expanded simultaneously, the meridian length on the boundary torus
for alternating links is bounded above by 2. It is worth emphasizing that the conjecture is for
when all the horoballs are simultaneously expanded. There are many examples of links where
expanding just one horoball results in a meridian length exceeding 2.

Theorem 3.3. Let Bn be the infinite family of alternating links with two components that is the
closure of the braid

(
σ−1

2 σ1σ3σ−1
2

)n
for odd n ≥ 3.

1. Meridian length of each braid can be computed as l = |w1|−
1
2 , where w1 is a root of the

following polynomial equation:(
16L4 − 8L2 + 1

)
w4

1 +
(
16L4 + 3L2 − 2

)
w3

1

+
(
12L4 − 2L2 + 1

)
w2

1 +
(
4L4 − 2L2

)
w1 + L4 = 0,

with L = 1
2 sec

(
π
n

)
.

2. As n approaches infinity, the meridian length l of the infinite family Bn converges to an
algebraic number given by:

√
6y · 6

√
x

4
√

−880 · y 3
√

x − 330
√

33 − 726 + 12 · 11 2
3 x

2
3 + 11yx

4
3

where
x = 3

√
33 + 77, y = 3√11 ,

which is approximately equal to 2.09355577138662.

Proof. A segment of link diagram of 4-braids Bn is drawn in Figure 2. When n is odd, the
closure of this 4-braids is link with two components , and when n is even, the closure of this
4-braids is link with four components. For n = 5, the closure of the braid B5 is shown in the
Figure 3

Using the algorithm provided by Thistlethwaite and Tsvietkova [9, 10], one can get the
following polynomial equations of the infinite family Bn.

4



w1
w1

w2

w2

A

B
C

u1

u1

u1

u1

u2 u2

u2 u2

0 0

0 01 1

1 1

Figure 2: A segment of link diagram of 4-braids Bn .

• The region A has four sides, and we get one equation from it.

u2
2 − w1 + w2 = 0

• The region B is a four sides, and we get the following equations from it.

u1u2 + u1 + u2 + 1 + w1 − w2u1 − w2 = 0

u2 + 1 − 2w2 = 0

u1u2 + u1 + u2 + 1 + 2w1 = 0

• The region C has n sides.
w1 − L2u2

1 = 0

where L = 1
2 sec

(
π

n

)
and L2 is a shape parameter for regular n-sided polygon. The derivation

of this shape parameter can be found in [9, Proposition 2.3]. By using the Gröbner basis method,
one can reduce the above system of equations to a single variable polynomial equation:(

16L4 − 8L2 + 1
)

w4
1 +

(
16L4 + 3L2 − 2

)
w3

1

+
(
12L4 − 2L2 + 1

)
w2

1 +
(
4L4 − 2L2

)
w1 + L4 = 0

This degree four polynomial equation can be solved by using Ferrari’s method. There
are two Galois conjugate solutions of this polynomial equation. The expressions of the roots of
this equation are gigantic, and only compact forms are listed in Appendix A. After finding the
solution, we compute the meridian length l =| w1 |−

1
2 on the torus boundary. For odd values

of n, w1 correspond to crossing arc running between the same boundary tori. As n −→ ∞,
L −→ 1

2 and the meridian length l converges to
√

6y · 6
√

x

4
√

−880 · y 3
√

x − 330
√

33 − 726 + 12 · 11 2
3 x

2
3 + 11yx

4
3
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Figure 3: An example of B5.

where

x = 3
√

33 + 77, y = 3√11

which is approximately equal to 2.09355577138662.

4 Future Problem
We are interested in finding other geometric invariants of the infinite family of 4-braids Bn. For
instance an explicit expression for exact volume like the one for 2-bridge link has been computed
in [16]. Given that the canonical decomposition of 2-bridge link is well-known by the work of
Sakuma and Weeks [17]. Our preliminary task for the infinite family Bn will be determining the
canonical decomposition of the link complement, followed by the derivation of an exact volume
expression for this family.
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A Appendix : Algebraic Expression for Meridian Length of
Infinite Family Bn

Here we outline Ferrari’s method for solving a 4-degree polynomial equation from Section 3.(
16L4 − 8L2 + 1

)
w4

1 +
(
16L4 + 3L2 − 2

)
w3

1 +
(
12L4 − 2L2 + 1

)
w2

1

+
(
4L4 − 2L2

)
w1 + L4 = 0

Let
• A =

(
16L4 − 8L2 + 1

)
• B =

(
16L4 + 3L2 − 2

)
• C =

(
12L4 − 2L2 + 1

)
• D =

(
4L4 − 2L2)

• E = L4

and
• a = C

A
− 3B2

8A2

• b = D

A
− BC

2A2 + B3

8A3

• c = E

A
− BD

4A2 + B2C

16A3 − 3B4

256A4

• P = −a2

12 − c

• Q = − a3

108 + ac

3 − b2

8

• R = −Q

2 ±

√
Q2

4 + P 3

27 , either sign of the square root will work.

• U = 3√R, there are 3 complex roots, any one of them will work.
• If U = 0 then y = −5

6a − 3
√

Q

• If U ̸= 0 then y = −5
6a + U − P

3U
• W =

√
a + 2y

and the four roots will be

• w1 = − B

4A
+

W +
√

−
(

3a + 2y + 2b

W

)
2

• w1 = − B

4A
+

W −
√

−
(

3a + 2y + 2b

W

)
2

• w1 = − B

4A
+

−W +
√

−
(

3a + 2y − 2b

W

)
2

• w1 = − B

4A
+

−W −
√

−
(

3a + 2y − 2b

W

)
2
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Let us define the following intermediate variables:

A = −3456L12 + 3024L10 + 2691L8 − 1708L6 + 438L4 − 48L2 + 2,

B = −42052608L20 + 58237920L18 − 29571831L16 + 6745464L14

− 690444L12 + 27216L10,

C = A +
√

B

3 · 21/3(4L2 − 1)2 ,

D = (16L4 + 3L2 − 2)2

4(4L2 − 1)4 ,

E = 12L4 − 2L2 + 1
(4L2 − 1)2 ,

F = 12L4 − 2L2 + 1
3(16L4 − 8L2 + 1) ,

G = 21/3(144L8 − 84L6 + 82L4 − 16L2 + 1)
3(4L2 − 1)2C1/3 ,

H = (16L4 + 3L2 − 2)3

(4L2 − 1)6 ,

I = 4(12L4 − 2L2 + 1)(16L4 + 3L2 − 2)
(4L2 − 1)4 ,

J = 16(2L4 − L2)
(4L2 − 1)2 .

Here is the expression for all roots of w1 in terms of the intermediate variables:

w
(1)
1 = −16L4 + 3L2 − 2

4(4L2 − 1)2 − 1
2

√
C1/3 + D − E + F + G

− 1
2

√
−C1/3 + D

2 − E − F − G − H − I + J

4
√

C1/3 + D − E + F + G
,

w
(2)
1 = −16L4 + 3L2 − 2

4(4L2 − 1)2 + 1
2

√
C1/3 + D − E + F + G

− 1
2

√
−C1/3 + D

2 − E − F − G + H − I + J

4
√

C1/3 + D − E + F + G
,

w
(3)
1 = −16L4 + 3L2 − 2

4(4L2 − 1)2 − 1
2

√
C1/3 + D − E + F + G

+ 1
2

√
−C1/3 + D

2 − E − F − G + H − I + J

4
√

C1/3 + D − E + F + G
,

w
(4)
1 = −16L4 + 3L2 − 2

4(4L2 − 1)2 + 1
2

√
C1/3 + D − E + F + G

+ 1
2

√
−C1/3 + D

2 − E − F − G − H − I + J

4
√

C1/3 + D − E + F + G
.

The full form of the solution is available on the Mathematica link: https://www.wolframcloud.
com/obj/7c9ea2c2-2955-493c-bf76-a7b08cebb391
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Here is the expression for meridian length l =| w |−
1
2 with the intermediate variables:

M = 6 − 9L2 − 48L4

(1 − 4L2)2 ,

N =
√

−L10(−6 + 13L2)2(−28 + 589L2 − 4256L4 + 9216L6),

O = 1 − 24L2 + 219L4 − 854L6 + 2691
2 L8 + 1512L10 − 1728L12 + 3

√
3

2 N,

P = 2 − 48L2 + 438L4 − 1708L6 + 2691L8 + 3024L10 − 3456L12 + 3
√

3N,

Q =

√√√√√√√√√√√√√√√√√√√

−12(1 − 4L2)2(1 − 2L2 + 12L4)
(1 − 4L2)4

+ 3(−2 + 3L2 + 16L4)2 + (1 − 4L2)2(4 − 8L2 + 48L4)
(1 − 4L2)4

+ 4(1 − 4L2)2(1 − 16L2 + 82L4 − 84L6 + 144L8)
(1 − 4L2)4O1/3

+ 2 · 22/3(1 − 4L2)2P 1/3

(1 − 4L2)4

,

R =

√√√√√√√√√√√√√√√√√√√

−8(1 − 4L2)4(1 − 2L2 + 12L4) − 3(2 − 11L2 − 4L4 + 64L6)2

(1 − 4L2)6

+ 2(1 − 4L2)4(1 − 16L2 + 82L4 − 84L6 + 144L8)
(1 − 4L2)6O1/3

+ 22/3(1 − 4L2)4P 1/3

(1 − 4L2)6

+ 3
√

3L2(72 − 834L2 + 3509L4 − 6320L6 + 4096L8)
(1 − 4L2)6Q

.

The final expression becomes:

l = 2
√

3√
M −

√
3Q −

√
6R

https://www.wolframcloud.com/obj/50d78fdd-19f1-4c16-803b-d28efdf43b47
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B Appendix : Numerical Approximation for Meridian Length
of Infinite Family Bn

We have also computed the numerical approximation for the meridian length of the infinite
family Bn. Referring to the equations outlined in Section 3, we provide the following Python
code to obtain the numerical approximation for the meridian length of the infinite family Bn.

#4−br a i d s f o r n=3, 5 , 7 , . . . 99 .

import numpy as np
import math

# The v a r i a b l e s are repre sen t ed as e lements o f the s t r i n g
# x [ 0 ] = w_1
# x [ 1 ] = w_2
# x [ 2 ] = u_1
# x [ 3 ] = u_2

# Define Sec ( x ) f unc t i on
def s ec ( x ) :

return 1/math . cos ( x )

# Define the func t i on f
def f (x , n ) :

return np . array ( [ x [ 3 ] ∗ ∗ 2 −x [ 0 ] +x [ 1 ] ,
x [ 2 ] ∗ x [ 3 ] + x [ 2 ] + x [ 3 ] +1 +x [ 0 ] − x [ 1 ] ∗ x [ 2 ] −x [ 1 ] ,
x [ 2 ] ∗ x [ 3 ] +x [ 2 ] + x [ 3 ] +1 +2∗x [ 0 ] ,
x [ 3 ] + 1 −2∗x [ 1 ] ,
x [ 0 ] − 0 .25 ∗ ( sec (math . p i / n ))∗∗2 ∗ x [ 2 ] ∗ ∗ 2 ] )

# Define the Jacobian o f f
def J (x , n ) :

return np . array ( [ [ −1 , 1 , 0 , 2∗x [ 3 ] ] ,
[ 1 , −x [ 2 ] − 1 , x [ 3 ] − x [ 1 ] + 1 , x [ 2 ] + 1 ] ,
[ 2 , 0 , x [ 3 ] + 1 , x [ 2 ] + 1 ] ,
[ 0 , −2, 0 , 1 ] ,
[ 1 , 0 , −0.25 ∗ ( s ec (math . p i / n ))∗∗2 ∗ 2∗x [ 2 ] , 0 ] ] )

# I n i t i a l guess f o r x
x0 = np . array ( [ 0 . 5 + 0.5∗1 j ] ∗ 4 , dtype=np . complex128 )

# I t e r a t e u n t i l convergence
for n in range ( 3 , 9 9 , 2 ) : # i t e r a t e over n from 3 to 99 wi th s t e p s 2 .

while True :
# Compute the QR decomposi t ion o f J ( x )
Q, R = np . l i n a l g . qr ( J ( x0 , n ) )

# Compute the s o l u t i o n to the l i n e a r system J( x ) ∗ dx = −f ( x )
dx = np . l i n a l g . s o l v e (R, np . dot (Q. conj ( ) . T, −f ( x0 , n ) ) )

# Update
x1 = x0 + dx
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n SnapPy Values Our Code Values
3 1.76095258 1.760953
5 1.96289334 1.962893
7 2.02454571 2.024546
9 2.0511218 2.051122
11 2.06489810 2.064898
13 2.0729294 2.072929
15 2.07801089 2.078011
17 2.08142571 2.081426
19 2.083829311 2.083829
21 2.08558431 2.085584
23 2.086904440 2.086904
25 2.08792219 2.087922
27 2.08872326 2.088723
29 2.08936499 2.089365

Table 1: Comparison of the meridian length by SnapPy and our code.

# Check f o r convergence
i f np . l i n a l g . norm( x1 − x0 ) < 1e −6:

break

x0 = x1

print (np . round( x1 , 6 ) )

The code is also available in the git repository [18]. After that, we computed the meridian
length | w1 |−

1
2 and compared these values against those provided by SnapPy, as detailed in

Table 1.
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