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Abstract

Recently machine learning model has been used to recognize knot type. We apply
convolutional neural networks to detect knot types in rigid diagrams created with Mosaics
(introduced by Lomonaco and Kauffman).
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1 Introduction
A central problem in knot theory is determining whether two knots are equivalent. The known
algorithm for solving this problem operates with tower of exponential complexity relative to the
crossing number of the knots [CL14]. Recent advances have produced more practical algorithms,
including a polynomial time algorithm for alternating knots and links by author and Tsvietkova
[HT25]. However, the development of an efficient algorithm for general knot recognition remains
unresolved.

The application of artificial intelligence (AI) to knot theory has increased significantly, with
AI-driven methods providing new insights and experminetal approaches to longstanding problems.
For instance, there is work on the unknot decision problem [GHRS21], the slice ribbon conjec-
ture [GHMR23], and the study of the properties of the Jones polynomial using dimensionality
reduction and topological data analysis [LHS22]. Kauffman et al. [KRT22] investigate the use
of neural networks to learn Dynnikov moves for knot recognition. Furthermore, deep learning
approaches have been employed to study algebraic and geometric structures [HZDM20], as well
as the relationship between knot invariants through topological data analysis tools [DGS21].

Hughes [HES] developed generative adversarial networks (GANs) that take a Jones poly-
nomial as input and output corresponding knot. Reinforcement learning methods, such as
Q-Learning and Deep Q-Learning, have been applied to the problem of untangling braids
[VL+22]. Additional approaches, including linear regression and deep neural network have been
utilized to identify relationships among hyperbolic knot invariants [Grü22].

Davis et al. [DVB+21, DJLT24] relate the signature, slope, volume, and injectivity radius of
hyperbolic knots an insight that was reveal by neural network model. Jejjala et al. [JKP19]
used deep learning to estimate the hyperbolic volume of knots. Craven [CJK21] approximated
the hyperbolic volume of a knot using a single evaluation of its Jones polynomial at a root of
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unity. More recently, Craven and Jejjala [CHJK22] explored the relationships between over 40
different knot invariants. More recently the colored jones polynomial has been used for volume
conjecture using the neural network [HJR+25].

In this study, we use computer vision techniques to recognize knots from their mosaic
diagrams. Convolutional Neural Networks (CNNs) are effective in image pattern recognition
and can be trained to interpret knot diagrams and predict their properties. Dranowski et al.
[DKT25] recently proposed a strategy combining CNN-based image analysis with traditional
knot invariants. Their methodology use neural network first to extract the knot’s features from
a picture, and then use classic topological invariants to verify or refine the classification. This
two-step “recognize-then-compute” approach integrate the strengths of both domains: CNN
handles noisy visual data, while mathematical invariants provide rigorous classification.

To enhance CNN based knot recoginin, a more structured representation of knot diagram is
utilized in this study. Knot mosaics, introduced by Lomonaco and Kauffman [LJK08], provide a
systematic method for encoding knot diagrams on a grid. Knot mosaics were originally part
of quantum knot system, which maps knot diagrams to states in a Hilbert space. Kauffman
and others explored application of quantum algorithms to compute Jones polynomial [LJK08].
There have been long list of papers by Lomonaco and Kauffman about use of mosaic in quantum
related area but it is beyond the scope of this study.

This work focuses on square mosaic grids on the plane. Although, there are work about
hexagonal mosaic tiles [HLL19] and square mosaics on the torus [OHL+17]. The planar square
mosaic is selected because it is more developed and have tabulations available.

In a (square) knot mosaic, a continuous knot diagram is decomposed into an n × n grid
of mosaic tiles. There are exactly 11 types of mosaic tiles (figure 1), which are sufficient to
construct any knot diagram. These tiles include straight segments, curved segments, crossings,
and empty space, arranged to ensure that connected strands continue from one tile to the next.
Every knot (indeed every link) can be represented on a mosaic board using some configuration
of these 11 tiles, providing a universal discrete encoding of knots. Mosaic knot theory has been
proven equivalent to standard tame knot theory (the Lomonaco–Kauffman conjecture, proved
by Kuriya & Shehab [KS14]). That is any ambient isotopy of knots can be realized through a
sequence of moves on the mosaic, such as adding, removing, or altering tiles, which are analogous
to Reidemeister moves. If two knots are topologically equivalent, their mosaic diagrams are
connected by a series of tile transformations, and conversely, any valid tile moves that transform
one mosaic into another correspond to an isotopy of the underlying knots. This ensures that the
mosaic representation preserves all topological information of the knot.

Figure 1: Mosaic Tiles

This study employs a Convolutional Neural Network (CNN) approach to address the knot
identification problem. Compare to work of Dranowski et al. [DKT25], who did not use mosaic
tiles and included a verification step based on computed invariants such as the Jones polynomial,
this study utilizes mosaic images of knots. These images provide a more structured and less
noisy representation. Although a verification step is not included, the CNN model demonstrates
efficient knot identification.
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Despite the structured nature of mosaic images, there are limitations to their use. The
number of distinct mosaics increases rapidly with board size, making comprehensive tables
for higher crossing knots challenging. For example there are over a billion knot mosaics on
6 × 6 board [OHLL15]). Therefore, this study is restricted to the available tabulation of up to
10-crossing prime knots available in [LLPP18, Hea25]. In practice, a CNN-based pipeline using
mosaics represents a knot as a matrix of discrete tile identifiers, which are then used to generate
mosaic images. During training, the network learns to recognize specific configurations of tiles
corresponding to known knot. For instance, particular arrangements of crossing and arc tiles
may indicate a trefoil knot or a figure-eight knot. Because the input is limited to valid mosaic
patterns, the CNN’s classification task is simplified. However, with only 249 knots in the dataset,
the image database is limited, and a standard machine learning model would not be able to
learn each knot type effectively. To address this, a variation of CNN suitable for problems with
limited examples per class is used, incorporation rotated images of each knot at 90, 180 and 270
degrees. Section 2 provides a brief explanation of this model and the preliminary concepts of
mosaic knot theory.

Section 3 describes the data processing, CNN with prototypical network model training and
evaluation, and the results. Section 4 discusses potential improvements and future research
directions.

2 Prerequisite
Mosaic Number of a knot L is the size of the smallest square grid needed to represent the knot.
It is defined as the minimum integer n such that the knot can be drawn on an n×n matrix of tiles.

Mosaic number of a knot L is related to the crossing number; an upper bound on mosaic
number in terms of crossing number is given in [LHLO14]. They proved that for any nontrivial
knot (or non-split link) except the Hopf link, the mosaic number is at most one more than the
crossing number. Thus, mosaics do not drastically increase the complexity of knot representations.

The tile number of a knot is the minimum number of non-blank tiles required to form a
mosaic diagram of the knot. Although the total number of tiles in an n × n grid is n2, many
tiles may remain blank (tile T0). Heap & Knowles [HK18] demonstrate that numerous knots
can be represented efficiently, using significantly fewer tiles than the full n2 grid.

2.1 Prototypical Networks for few-shot classification

In neural networks, the well-known image classification model is the convolutional neural network
(CNN), which was used by Dranowski et al. [DKT25] for knot identification. Standard CNNs
require large numbers of labeled examples. In contrast, metric learning approaches trained
episodically can leverage structural inductive biases to generalize from limited data. This study
evaluates prototypical networks trained episodically on rotated images generated from standard
knot mosaic images.

Episodic prototypical networks [SSZ17] is used to this knot identification problem because
this architecture is well-suited when there are many distinct classes but few examples per
class. For training we uses rotated variants of the available examples to form the training pool
while evaluation is performed on held-out standard mosaic images. We compare three episodic
configurations of training (20-way, 10-way, 5-way).
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3 Experiment

3.1 Data

• The original mosaic tabulation images exhibit inconsistencies in format and background
color. Therefore, the mosaic images were recreated using the tiles shown in the Figure 1
to ensure consistency for training purposes.

• Rotated version of each knot image were generated at 90, 180 and 270 degree. These
rotations yield valid diagrams of the same knot, as planar rotation does not alter knot
topology. The resulting images comprised the training pool.

• Mirror images were excluded from the dataset because not all knots are amphicheiral.
• The dataset contains 249 unique prime knots with up to 10 crossings.
• Afer generating rotated images, the training pool consisted of 747 rotated samples, while

the validation set included 249 original images.

3.2 Model and training

We adopt a prototypical network framework. The embedding network is a lightweight convolu-
tional feature extractor followed by a projection head producing 128-dimensional embeddings.
During each episode, the sampler constructs N-way K-shot tasks by selecting K support examples
and Q query examples for each of the N classes. Class prototypes are computed as the mean of
support embeddings for each class, and queries are claasified based on the nearest prototype in
Euclidean space. Training optimizes the cross-entropy loss between softmax-normalized negative
squared distances and the query labels.

The Adam optimizer was used with a learning rate of 1e−3. The number of episodes per
epoch and total epochs were selected to ensure stab per-epoch evaluation curves, as detailed in
the experiments section.

3.3 Experimental protocol

We evaluate combinations of episode width N ∈ {5, 10, 20} and support size K ∈ {2, 3} with a
consistent query count Q = 3 per class. These settings are referred to as “3-shot” and “2-shot”
respectively. Each run was trained for 10 epochs with 200 episodes per epoch.

For each configuration, class prototypes were constructed from the rotated training pool
after each epoch. Top-1, top-2 and top-3 accuracy were evaluated on the held-out set. These
metrics were logged per epoch and used to generate comparison plots.

The evaluation metrics used throughout the paper are defined as follows. Top-1 accuracy is
the fraction of query examples for which the nearest prototype (the single predicted class) equals
the true class. Top-2 and top-3 accuracy indicate whether the true class appears among the two
or three nearest prototypes respectively. Because we hold out a single canonical example per
class, the top-2 metric offers an informative complement to top-1 while top-3 highlights whether
the correct class remains near the top of the similarity ranking.

3.4 Results

Table 2 presents the final-epoch evaluation performance, including top-1, top-2, and top-3
accuracy, for each (N, K) combination. Figure 2a, 2b shows the top-1 accuracy trajectories,
Figure 2c, 2d highlights top-2 accuracy, and Figure 2e 2f shows top-3 accuracy curves by support
size. These curves illustrate how quickly each setting reaches high accuracy and how performance
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shifts as the number of support examples decreases.

For comparison, classical baseline models were also trained on the rotated training pool, with
canonical originals reserved for evaluation. Table 1 shows their performance. Both k-nearest
neighbors (k-NN) and radial basis function support vector machine (RBF SVM) performed
poorly under the limited-data set, underscoring the effectiveness of the episodic metric-learning
approach.

Table 1: Baseline classifiers trained on rotated samples and evaluated on canonical originals.

Model Top-1 Top-2 Top-3
k-NN (k = 3, distance weights) 0.0482 0.0683 0.0843
SVM (RBF kernel, C = 1) 0.0040 0.0080 0.0120

Table 2: Final epoch evaluation on held-out canonical examples (Q=3 queries per class during
evaluation).

Shot Configuration Eval top-1 Eval top-2 Eval top-3

3-shot
20-way 0.9639 0.9960 0.9960
10-way 0.7992 0.9157 0.9518
5-way 0.6667 0.8795 0.9116

2-shot
20-way 0.9679 0.9960 0.9960
10-way 0.9237 0.9839 0.9960
5-way 0.8353 0.9558 0.9759

The prototypical training demonstrates strong generalization to held-out canonical examples
when the training pool contains rotated variants. With three support examples, the 20-way con-
figuration attains top-1 of 0.96 and ranks the correct class within the top two 99.6% of the time.
The 5-way configuration maintains high top-2 (0.88) despite lower top-1 score, indicating that
most misclassifications are ranked second. When reducing to two support examples, performance
improves for broader episodes: both 20-way and 10-way setting exceed 0.98 top-2 accuracy and
approach perfect top-3 results, while the 5-way configuration recovers to 0.96 top-2 and 0.98
top-3. In contrast, classical classifiers trained on the same rotated pool (Table 1) remain below
9% top-3 accuracy, highlighting the limitations of non-episodic methods under limited canonical
supervision. The observed variance in 3-shot 5-way episodes indicates that episode composition
still matters, suggesting the need for extended training schedules or curriculum strategies to
tabilize low-shot performance.

A primary limitation of this approach is its dependence on rotated/augmented variants to
expand the training pool, while canonical examples per class remain limited. Future work could
evaluate robustness to more realistic covariate shifts and explore alternative prototype estimators
(e.g., median or robust mean) when rotated variants are noisy.

4 Future Direction
The experiment considered only 90◦, 180◦ and 270◦ planar rotations to the mosaic images, which
are topologically trivial transformations. The knot equivalence problem requires knots to be
ambient isotopic, which is more complex than simple rotation. The next phase of this study is to
extended the experiment by first generating augmentation images of each class by implementing
the mosaic tile equivalent Reidmeister moves. Training a network on this a dataset is expected to
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(a) Top-1, 2-shot. (b) Top-1, 3-shot.

(c) Top-2, 2-shot. (d) Top-2, 3-shot.

(e) Top-3, 2-shot. (f) Top-3, 3-shot.

Figure 2: Per-epoch evaluation curves grouped by support size for top-1, top-2, and top-3
metrics.

encourage the model to learn topological feature rather than relying solely on geometric rotations.

The dataset used in this study was limited in size. A future direction involves creating mosaic
images for knots and links with higher crossing numbers. The number of possible n × n knot
mosaics increases rapidly with n, making exhaustive tabulation infeasible for larger crossing
number. Work by Hong et al. [HOLL14, LHLO14] and Lee et al. [LLPP18] demonstrates the
exponential grow in the number of possible knot mosaic.

A critical sub-problem in this direction is the conversion of hand-drawn or computer-
generated knot diagrams into mosaic representations. Integrating the approach of Dranowski et
al. [DKT25] and also incorporate the verification step based on knot invariants would strengthen
knot detection and mitigate errors introduced by convolutional neural networks.
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Remark: All the data and CNN architect is available in the GitHub repository : https:
//github.com/thaidermath/knot_mosaic_cnn
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